
slow, underscoring the need for more automated and
accurate solutions. The article describes in detail the
architecture of the proposed system, which includes
components such as a PLC, an industrial camera, an
OPC-UA server, and the YOLO v8 model. The in-
teraction between these components is highlighted to
achieve efficient near-real-time defect detection. Fur-
thermore, experimental results are presented, includ-
ing performance metrics such as RTT and E2E to
evaluate the system efficiency.
Finally, the combined use of OPC-UA and
YOLOv8 in industrial environments offers significant
benefits such as secure, standardized communica-
tion, and interoperability between devices, along with
near-real-time monitoring. OPC-UA enables seam-
less and protected data exchange, while YOLOv8 pro-
vides fast and accurate object classification, automat-
ing visual inspection and reducing human errors. Ad-
ditionally, OPC-UA’s capability to access and ana-
lyze historical data facilitates predictive maintenance
and process optimization, enhancing operational effi-
ciency and product quality.
ACKNOWLEDGEMENTS
This research has been partially supported by the
ESPOL project “Automatizaci
´
on del proceso de de-
tecci
´
on de fallas en piezas de hojalata usando visi
´
on
por computador” (CIDIS-004-2023), and by Univer-
sity of Granada.
REFERENCES
Dey, S. and Agrawal, M. K. (2016). Tinplate as a sustain-
able packaging material: Recent innovation and de-
velopments to remain environment friendly and cost
effective. Int. J. Res. IT Manag. Eng, 8:9–22.
Dominguez, E., Spinola, C., Luque, R. M., Palomo, E. J.,
and Munoz, J. (2006). Object recognition and inspec-
tion in difficult industrial environments. In Int. Conf.
on Industrial Technology, pages 989–993. IEEE.
Eckhardt, A. and M
¨
uller, S. (2019). Analysis of the round
trip time of opc ua and tsn based peer-to-peer commu-
nication. In Int. Conf. on Emerging Technologies and
Factory Automation (ETFA), pages 161–167. IEEE.
Foundation, O. (2023). OPC Unified Architecture. Ac-
cessed: December 2023.
FreeOpcUa (
´
ultimo acceso: 2024-02-28). FreeOpcUa Mod-
eler. https://github.com/FreeOpcUa/opcua-modeler.
Georgi Martinov, Roman Pushkov, S. E. (2017). Opc ua-
based smart manufacturing: System architecture, im-
plementation, and execution. IEEE.
Gutierrez-Guerrero, J. M. and Holgado-Terriza, J. A.
(2017). iMMAS an Industrial Meta-Model for Au-
tomation System Using OPC UA. Elektronika Ir Elek-
trotechnika, 23((3)):3–11.
Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., and Wang,
C.-Y. (2017). Current status and future trends of high-
pressure processing in food industry. Food control,
72:1–8.
Iqbal, R., Maniak, T., Doctor, F., and Karyotis, C. (2019).
Fault detection and isolation in industrial processes
using deep learning approaches. Transactions on In-
dustrial Informatics, 15(5):3077–3084.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics
yolov8.
Li, Q., Tang, Q., Chan, I., Wei, H., Pu, Y., Jiang, H., Li,
J., and Zhou, J. (2018). Smart manufacturing stan-
dardization: Architectures, reference models and stan-
dards framework. Computers in Industry, 101:91–
106.
Monteiro, C. A., Cannon, G., Lawrence, M.,
Costa Louzada, M. d., and Pereira Machado, P.
(2019). Ultra-processed foods, diet quality, and health
using the nova classification system. Rome: FAO, 48.
Montgomery, D. C. (2019). Introduction to statistical qual-
ity control. John wiley & sons.
Nedeljkovic, D. M. and Jakovljevic, Z. B. (2020). Integra-
tion of smart vision sensor into manipulator control
system using opc-ua. IEEE.
Rocha, L. F., Ferreira, M., Santos, V., and Moreira, A. P.
(2014). Object recognition and pose estimation for
industrial applications: A cascade system. Robotics
and Computer-Integrated Manufacturing, 30(6):605–
621.
S
´
anchez Santalices, J., Moya de la Torre, E. J., and Pon-
cela M
´
endez, A. V. (2023). Implementaci
´
on de una
red neuronal para la detecci
´
on de anomal
´
ıas en ban-
dejas. In Jornadas de Autom
´
atica, pages 873–878.
Universidade da Coru
˜
na. Servizo de Publicaci
´
ons.
Sch
¨
afer, G., Kozlica, R., Wegenkittl, S., and Huber, S.
(2022). An architecture for deploying reinforcement
learning in industrial environments. In Int. Conf.
on Computer Aided Systems Theory, pages 569–576.
Springer.
Surendran, R., Khalaf, O. I., and Tavera Romero, C. A.
(2022). Deep learning based intelligent industrial fault
diagnosis model. Computers, Materials & Continua,
70(3).
Velesaca, H. O., Holgado-Terriza, J. A., and Gutierrez-
Gutierrez, J. M. (2024). Optimizing Smart Factory
Operations: A Methodological Approach to Industrial
System Implementation based on OPC-UA. In Int.
Conf. of Applied Industrial Engineering, pages 1–15.
Verkhivker, Y., Altman, E. I., Dotsenko, N. V., and Mirosh-
nishenko, E. (2020). Commodity approach to materi-
als when manufacturing containers for foods. Iuniper
Online Journal Material Science, 6(3):555687.
Zheng, P., Wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu,
C., Mubarok, K., Yu, S., and Xu, X. (2018). Smart
manufacturing systems for industry 4.0: Conceptual
framework, scenarios, and future perspectives. Fron-
tiers of Mechanical Engineering, 13:137–150.
DATA 2024 - 13th International Conference on Data Science, Technology and Applications
512