
ACKNOWLEDGEMENTS
In this work, artificial intelligence (AI) was used for
grammar checking and sentence optimization.
REFERENCES
Adday, G. H., Subramaniam, S. K., Zukarnain, Z. A., and
Samian, N. (2024). Investigating and analyzing sim-
ulation tools of wireless sensor networks: A compre-
hensive survey. IEEE Access, 12:22938–22977.
Chambon, C., Piller, O., and Mortazavi, I. (2024). A ro-
bust simulator of pressure-dependent consumption in
python. Journal of Hydroinformatics, pages 284–303.
Chang, Y (Chang, Y., Wei, DX (Wei, D., Jia, HH (Jia,
H., Curreli, C (Curreli, C., Wu, ZZ (Wu, Z., Sheng,
M (Sheng, M., Glaser, SJ (Glaser, S. J., and Yang,
XD (Yang, X. (2019). Spin-scenario: A flexible
scripting environment for realistic mr simulations.
Journal of Magnetic Resonance, pages 1–9.
D’Aquino, Z., Arabas, S., Curtis, J. H., Vaishnav, A.,
Riemer, N., and West, M. (2024). Pypartmc: A
pythonic interface to a particle-resolved, monte carlo
aerosol simulation framework. SoftwareX, 25:101613.
Deb, K. and Jain, H. (2014). An evolutionary many-
objective optimization algorithm using reference-
point-based nondominated sorting approach, part i:
Solving problems with box constraints. IEEE Trans-
actions on Evolutionary Computation, 18(4):577–
601.
Duan, K., Fong, S., Siu, S. W. I., Song, W., and Guan,
S. S. (2018). Adaptive incremental genetic algorithm
for task scheduling in cloud environments. Symmetry,
10(5):168.
eProsima (2024). Fast dds documentation. Accessed: 2024-
03-26.
Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., and
Tafazolli, R. (2021). Pga: A priority-aware genetic
algorithm for task scheduling in heterogeneous fog-
cloud computing. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 1–6.
Ierusalimschy, R., De Figueiredo, L. H., and Celes, W.
(2011). Passing a language through the eye of a nee-
dle. Communications of the ACM, 54(7):38–43.
Jawaddi, S. N. A. and Ismail, A. (2024). Integrating openai
gym and cloudsim plus: A simulation environment for
drl agent training in energy-driven cloud scaling. Sim-
ulation Modelling Practice and Theory, page 102858.
Kelefouras, V. I. and Djemame, K. (2022). Workflow
simulation and multi-threading aware task scheduling
for heterogeneous computing. J. Parallel Distributed
Comput., 168:17–32.
Liu, Z., Chen, Z., and Song, K. (2021). Spinspj: a novel
nmr scripting system to implement artificial intelli-
gence and advanced applications. BMC bioinformat-
ics, page 581.
Lu, C., Gao, L., Yi, J., and Li, X. (2020). Energy-efficient
scheduling of distributed flow shop with heteroge-
neous factories: A real-world case from automobile
industry in china. IEEE Transactions on Industrial
Informatics, 17(10):6687–6696.
Sang, Y., Tan, J., and Liu, W. (2020). Research on
many-objective flexible job shop intelligent schedul-
ing problem based on improved nsga-iii. IEEE Access,
8:157676–157690.
Souza, P., Ferreto, T., and Calheiros, R. N. (2023). Ed-
gesimpy: Python-based modeling and simulation of
edge computing resource management policies. Fu-
ture Gener. Comput. Syst., 148:446–459.
Whitley, D., Quevedo De Carvalho, O., Roberts, M., Shetty,
V., and Jampathom, P. (2023). Scheduling multi-
resource satellites using genetic algorithms and per-
mutation based representations. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 1473–1481.
Wong, T., Timoshkin, I. V., Macgregor, S. J., Wilson, M. P.,
and Given, M. J. (2023). The design of a python li-
brary for the automatic definition and simulation of
transient ionization fronts. IEEE Access, 11:26577–
26592.
Wornow, M., Gyang Ross, E., Callahan, A., and Shah,
N. H. (2023). Aplus: A python library for usefulness
simulations of machine learning models in healthcare.
Journal of Biomedical Informatics, 139:104319.
Zhang, W., Li, C., Gen, M., Yang, W., and Zhang, G.
(2024). A multiobjective memetic algorithm with par-
ticle swarm optimization and q-learning-based local
search for energy-efficient distributed heterogeneous
hybrid flow-shop scheduling problem. Expert Syst.
Appl., 237(Part C):121570.
Zhiwu, D. and Yanfeng, L. (2009). Dynamic time man-
agement algorithms research in simulation system hla-
based. In 2009 Second International Workshop on
Computer Science and Engineering, volume 1, pages
580–583.
Zhu, L., Zhang, F., Zhu, X., Chen, K., and Zhang, M.
(2023). Sample-aware surrogate-assisted genetic pro-
gramming for scheduling heuristics learning in dy-
namic flexible job shop scheduling. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence, pages 384–392.
Evolutionary Multi-Objective Task Scheduling for Heterogeneous Distributed Simulation Platform
157