
REFERENCES
AboDoma, N., Shaaban, E., and Mostafa, A. (2021). Adap-
tive time-bound access control for internet of things in
fog computing architecture. Int. J. of Comp. and App.,
pages 1–12.
Akinyele, J. A., Green, M. D., and Rubin, A. D.
(2011). Charm: A framework for rapidly prototyp-
ing cryptosystems. Cryptology ePrint Archive, Report
2011/617.
Ali, Z. H., Ali, H. A., and Badawy, M. M. (2015). Internet
of Things (IoT): Definitions, Challenges and Recent
Research Directions. Int. J. of Comp. App., 128(1):37–
47.
Ambrona, M. and Gay, R. (2023). Multi-authority abe for
non-monotonic access structures. In PKC’23, pages
306–335.
Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T.,
Moosavi, S. R., Rahmani, A. M., and Liljeberg, P.
(2016). On the Feasibility of Attribute-Based En-
cryption on Internet of Things Devices. IEEE Micro,
36(6):25–35.
Beimel, A. (1996). Secure Schemes for Secret Sharing and
Key Distribution. PhD thesis, Israel.
Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In
SP’07, pages 321–334.
Chase, M. (2007). Multi-authority attribute based encryp-
tion. In TCC’07, pages 515–534.
Datta, P., Komargodski, I., and Waters, B. (2021). Decen-
tralized multi-authority abe for dnfs from lwe. In EU-
ROCRYPT’21, pages 177–209.
Galbraith, S. D. (2001). Supersingular curves in cryptogra-
phy. In ASIACRYPT’01, pages 495–513.
Guillevic, A. (2013). Comparing the pairing efficiency over
composite-order and prime-order elliptic curves. In
ACNS’13, pages 357–372.
Hwang, Y. H. (2015). IoT Security & Privacy: Threats and
Challenges. In IoTPTS’15.
Liu, J. K., Yuen, T. H., Zhang, P., and Liang, K.
(2018). Time-based direct revocable ciphertext-policy
attribute-based encryption with short revocation list.
In ACNS’18, pages 516–534.
Liu, Z., Wang, F., Chen, K., and Tang, F. (2020). A
new user revocable ciphertext-policy attribute-based
encryption with ciphertext update. Secur. Commun.
Netw., 2020:1–11.
Lu, X., Fu, S., Jiang, C., and Lio, P. (2021). Security and
privacy challenges for intelligent internet of things de-
vices view this special issue. Sec. and Comm. Netw.,
2021.
Macedo, D., Guedes, L. A., and Silva, I. (2014). A depend-
ability evaluation for internet of things incorporating
redundancy aspects. In ICNSC’14, pages 417–422.
Mekki, K., Bajic, E., Chaxel, F., and Meyer, F. (2019).
A comparative study of lpwan technologies for large-
scale iot deployment. ICT Express, 5(1):1–7.
Miyaji, A., Nakabayashi, M., and Takano, S. (2000).
Characterization of elliptic curve traces under FR-
reduction. In ICISC’00, pages 90–108.
Oualha, N. and Nguyen, K. T. (2016). Lightweight
attribute-based encryption for the internet of things.
In ICCCN’16, pages 1–6.
Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto,
T., Kasama, T., and Rossow, C. (2015). IoT-
POT: Analysing the Rise of IoT Compromises. In
WOOT’15, pages 9–9.
Patel, M., Shangkuan, J., and Thomas, C. (2017). What’s
new with the Internet of Things? Technical report,
McKinsey.
Pham, C., Lim, Y., and Tan, Y. (2016). Management ar-
chitecture for heterogeneous iot devices in home net-
work. In GCCE’16, pages 1–5.
Rouselakis, Y. and Waters, B. (2015). Efficient statically-
secure large-universe multi-authority attribute-based
encryption. In FC’15, pages 315–332.
Sahai, A., Seyalioglu, H., and Waters, B. (2012). Dynamic
credentials and ciphertext delegation for attribute-
based encryption. In CRYPTO’2012, pages 199–217.
Sahai, A. and Waters, B. (2005). Fuzzy identity-based en-
cryption. In EUROCRYPT’05, pages 457–473.
Shamir, A. (1985). Identity-based cryptosystems and signa-
ture schemes. In CRYPTO’84, pages 47–53.
Sun, Y., Agostini, N. B., Dong, S., and Kaeli, D. (2020).
Summarizing CPU and GPU design trends with prod-
uct data. arXiv 1911.11313.
Waters, B. (2011). Ciphertext-policy attribute-based en-
cryption: An expressive, efficient, and provably se-
cure realization. In PKC’11, pages 53–70.
Yan, X., Tu, S., Alasmary, H., and Huang, F. (2023). Multi-
authority ciphertext policy-attribute-based encryption
(MA-CP-ABE) with revocation and computation out-
sourcing for resource-constraint devices. MDPI Appl.
Sc., 13(20).
Yang, K. and Jia, X. (2014). Expressive, efficient, and re-
vocable data access control for multi-authority cloud
storage. IEEE Trans. on Paral. and Dist. Syst.,
25(7):1735–1744.
Yao, X., Chen, Z., and Tian, Y. (2015). A lightweight
attribute-based encryption scheme for the internet of
things. Future Gener. Comput. Syst., 49(C):104–112.
Zhang, J., Li, T., Jiang, Q., and Ma, J. (2022a). Enabling
efficient traceable and revocable time-based data shar-
ing in smart city. Eurasip J. on Wirel. Comm. and
Netw., 2022(3).
Zhang, Q., Wang, S., Zhang, D., Wang, J., and Zhang, Y.
(2019). Time and Attribute Based Dual Access Con-
trol and Data Integrity Verifiable Scheme in Cloud
Computing Applications. IEEE Access, 7:137594–
137607.
Zhang, R., Li, J., Lu, Y., Han, J., and Zhang, Y. (2022b).
Key escrow-free attribute based encryption with user
revocation. Inf. Sc., 600:59–72.
Zhang, T., Wang, C., and Chandrasena, M. I. U. (2023).
Blockchain-assisted data sharing supports deduplica-
tion for cloud storage. Connect. Sc., 35(1).
Zhang, Y., Nakanishi, R., Sasabe, M., and Kasahara, S.
(2021). Combining IOTA and Attribute-Based En-
cryption for Access Control in the Internet of Things.
MDPI Sensors, 21(15):50–53.
MATRaCAE: Time-Based Revocable Access Control in the IoT
285