REFERENCES
P. Voigt, and A. Von dem Bussche, A Practical Guide, 1st
Ed., Cham: Springer International Publishing
10(3152676), 10–5555, (2017).
J. Kingston, Artificial Intelligence and Law, 25(4), 429–
443 (2017).
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and
B. He, IEEE Trans. Knowl. Data Eng., (2021).
T. Li, A.K. Sahu, A. Talwalkar, and V. Smith, IEEE Signal
Process. Mag. 37(3), 50–60, (2020).
Q. Yang, Y. Liu, T. Chen, and Y. Tong, ACM Transactions
on Intelligent Systems and Technology (TIST) 10(2),
1–19, (2019).
S. Tyagi, I.S. Rajput, and R. Pandey, “Federated learning:
Applications, Security hazards and Defense measures”.
in 2023 International Conference on Device
Intelligence, Computing and Communication
Technologies, (DICCT) (2023), pp. 477–482.
P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis,
A.N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R.
Cummings, and others, Foundations and Trends® in
Machine Learning, 14(12), 1–210, (2021).
H. Zhu, J. Xu, S. Liu, and Y. Jin, Neurocomputing, 465,
371–390, (2021).
T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, Proceedings of Machine Learning and
System,s 2, 429–450, (2020).
X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, arXiv
Preprint arXiv:1907.02189, (2019).
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.A.
y Arcas, “Federated learning: Applications, Security
hazards and Defense measures”. in Proceedings of the
20th International Conference on Artificial Intelligence
and Statistics, edited by A. Singh and J. Zhu (PMLR,
2017), pp. 1273–1282.
S. Su, B. Li, and X. Xue, Neural Networks, 164, 203–215,
(2023).
M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N.
Hoang, and Y. Khazaeni, “Bayesian Nonparametric
Federated Learning of Neural Networks”. in
Proceedings of the 36th International Conference on
Machine Learning, edited by K. Chaudhuri and R.
Salakhutdinov, (PMLR, 2019), pp. 7252–7261.
S. Claici, M. Yurochkin, S. Ghosh, and J. Solomon, “Model
Fusion with Kullback-Leibler Divergence”. in
Proceedings of the 37th International Conference on
Machine Learning, edited by H.D. III and A. Singh,
(PMLR, 2020), pp. 2038–2047.
S. Shukla, and N. Srivastava, “Federated matched
averaging with information-gain based parameter
sampling”. in Proceedings of the First International
Conference on AI-ML Systems, (Association for
Computing Machinery, New York, NY, USA, 2021),
pp. 1-7.
Q. Li, B. He, and D. Song, “Model-contrastive federated
learning”. in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, (2021),
pp. 10713–10722.