
Chauhan, T., Katkar, V., and Vaghela, K. (2022). Corn leaf
disease detection using regnet, kernelpca and xgboost
classifier. In International Conference on Advance-
ments in Smart Computing and Information Security,
pages 346–361. Springer.
Demilie, W. B. (2024). Plant disease detection and classifi-
cation techniques: a comparative study of the perfor-
mances. Journal of Big Data, 11 (5).
Divyanth, L., Ahmad, A., and Saraswat, D. (2023). A
two-stage deep-learning based segmentation model
for crop disease quantification based on corn field im-
agery. Smart Agricultural Technology, 3:100108.
Esgario, J. G., Krohling, R. A., and Ventura, J. A. (2020).
Deep learning for classification and severity estima-
tion of coffee leaf biotic stress. Computers and Elec-
tronics in Agriculture, 169:105162.
FAO (2020(accessed April 11, 2020)). Fao. https://www.
fao.org/india/fao-in-india/india-at-a-glance/en/.
Gayathri, S., Wise, D. J. W., Shamini, P. B., and Muthuku-
maran, N. (2020). Image analysis and detection of tea
leaf disease using deep learning. In 2020 International
Conference on Electronics and Sustainable Communi-
cation Systems (ICESC), pages 398–403. IEEE.
GHOSE, S. (2022). Corn or Maize Leaf Disease Dataset
— kaggle.com. https://www.kaggle.com/datasets/
smaranjitghose/corn-or-maize-leaf-disease-dataset.
[Accessed 19-04-2024].
Haque, M. A., Marwaha, S., Deb, C. K., Nigam, S., and
Arora, A. (2023). Recognition of diseases of maize
crop using deep learning models. Neural Computing
and Applications, 35(10):7407–7421.
Huang, X., Chen, A., Zhou, G., Zhang, X., Wang, J., Peng,
N., Yan, N., and Jiang, C. (2023). Tomato leaf disease
detection system based on fc-sndpn. Multimedia tools
and applications, 82(2):2121–2144.
Jasrotia, S., Yadav, J., Rajpal, N., Arora, M., and Chaud-
hary, J. (2023). Convolutional neural network based
maize plant disease identification. Procedia Computer
Science, 218:1712–1721.
Jensen, M., Jakobsen, J. T., Sharifirad, I., and Boudjadar,
J. (2023). Advanced acceleration and implementation
of convolutional neural networks on fpgas. In 2023
IEEE International Conference on High Performance
Computing and Communications HPCC.
Ji, M., Zhang, K., Wu, Q., and Deng, Z. (2020). Multi-label
learning for crop leaf diseases recognition and sever-
ity estimation based on convolutional neural networks.
Soft Computing, 24:15327–15340.
Karlekar, A. and Seal, A. (2020). Soynet: Soybean leaf
diseases classification. Computers and Electronics in
Agriculture, 172:105342.
Kaur, H., Kumar, S., Hooda, K., Gogoi, R., Bagaria, P.,
Singh, R., Mehra, R., and Kumar, A. (2020). Leaf
stripping: an alternative strategy to manage banded
leaf and sheath blight of maize. Indian Phytopathol-
ogy, 73(2):203–211.
Kumar, V., Arora, H., Sisodia, J., et al. (2020). Resnet-
based approach for detection and classification of
plant leaf diseases. In 2020 international conference
on electronics and sustainable communication sys-
tems (ICESC), pages 495–502. IEEE.
Liu, B., Ding, Z., Tian, L., He, D., Li, S., and Wang, H.
(2020). Grape leaf disease identification using im-
proved deep convolutional neural networks. Frontiers
in Plant Science, 11:1082.
Manzoor, S., Manzoor, S. H., Islam, S. u., and Boudjadar, J.
(2023). Agriscannet-18: A robust multilayer cnn for
identification of potato plant diseases. In Intelligent
Systems and Applications.
Mohanty, S. P., Hughes, D. P., and Salath
´
e, M. (2016). Us-
ing deep learning for image-based plant disease detec-
tion. Frontiers in plant science, 7:215232.
Olawuyi, O. and Viriri, S. (2022). Plant diseases detec-
tion and classification using deep transfer learning. In
Pan-African Artificial Intelligence and Smart Systems
Conference, pages 270–288. Springer.
Ramcharan, A., McCloskey, P., Baranowski, K., Mbilinyi,
N., Mrisho, L., Ndalahwa, M., Legg, J., and Hughes,
D. P. (2019). A mobile-based deep learning model for
cassava disease diagnosis. Frontiers in plant science,
10:272.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Saleem, R., Yuan, B., Kurugollu, F., Anjum, A., and Liu, L.
(2022). Explaining deep neural networks: A survey on
the global interpretation methods. Neurocomputing,
513:165–180.
Tirkey, D., Singh, K. K., and Tripathi, S. (2023). Per-
formance analysis of ai-based solutions for crop dis-
ease identification, detection, and classification. Smart
Agricultural Technology, 5.
Uchida, S., Ide, S., Iwana, B. K., and Zhu, A. (2016). A
further step to perfect accuracy by training cnn with
larger data. In 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR).
Vallabhajosyula, S., Sistla, V., and Kolli, V. K. K. (2022).
Transfer learning-based deep ensemble neural net-
work for plant leaf disease detection. Journal of Plant
Diseases and Protection, 129(3):545–558.
Waheed, H., Akram, W., Islam, S. u., Hadi, A., Boudjadar,
J., and Zafar, N. (2023). A mobile-based system for
detecting ginger leaf disorders using deep learning.
Future Internet, 15(3):86.
Wiesner-Hanks, T. and Brahimi, M. (2022). OSF — osf.io.
https://osf.io/arwmy/. [Accessed 19-04-2024].
Yang, S., Xing, Z., Wang, H., Dong, X., Gao, X., Liu, Z.,
Zhang, X., Li, S., and Zhao, Y. (2023). Maize-yolo:
a new high-precision and real-time method for maize
pest detection. Insects, 14(3):278.
Zimmermann, A., Webber, H., Zhao, G., Ewert, F., Kros, J.,
Wolf, J., Britz, W., and de Vries, W. (2017). Climate
change impacts on crop yields, land use and environ-
ment in response to crop sowing dates and thermal
time requirements. Agricultural Systems, 157:81–92.
ICSOFT 2024 - 19th International Conference on Software Technologies
282