
ACKNOWLEDGEMENTS
This work was supported by the Student Summer
Research Program 2023 of the FIT CTU in Prague
and by the Czech Technical University in Prague
grant: Advance Research In Software Engineering,
No. SGS23/206/OHK3/3T/18.
REFERENCES
Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. (2008). Extensible markup language
(xml) 1.0 (fifth edition). [online]. [Accessed 2023-08-
13].
Cardoso, J., Castro, L. J., Ekaputra, F. J., Jacquemot, M. C.,
Such
´
anek, M., Miksa, T., and Borbinha, J. (2022).
DCSO: towards an ontology for machine-actionable
data management plans. Journal of Biomedical Se-
mantics, 13(1):21.
Data Documentation Initiative (2023). Machine-actionable.
[Accessed 2023-07-17].
DataCite (2021). Introduction to machine actionable dmps
(madmps). [online]. [Accessed 2023-08-13].
DSW Team (2018). Common DSW Knowledge Model.
[online]. [Accessed 2023-03-19].
ELIXIR, Research Data Management Kit (2021). Machine-
actionability. [Accessed 2023-07-17].
European Commission (2020). Horizon 2020 dmp. [on-
line]. [Accessed 2023-12-15].
Foidl, R. and Burgger, L. S. (2021). Evaluation of maDMPs
using SPARQL.
Harris, S. and Seaborne, A. (2013). Sparql 1.1 query lan-
guage. [online]. [Accessed 2023-08-13].
Kaz, M. (2017). Xsl transformations (xslt) version 3.0. [on-
line]. [Accessed 2023-08-13].
Khare, R. (2006). Microformats: the next (small) thing
on the semantic web? IEEE Internet Computing,
10(1):68–75.
Lin, D., Crabtree, J., Dillo, I., Downs, R., Edmunds, R., Gi-
aretta, D., Giusti, M., L’Hours, H., Hugo, W., Jenkyns,
R., Khodiyar, V., Martone, M., Mokrane, M., Navale,
V., Petters, J., Sierman, B., Sokolova, D., Stockhause,
M., and Westbrook, J. (2020). The trust principles for
digital repositories. Scientific Data, 7.
Mart
´
ınkov
´
a, J. and Such
´
anek, M. (2024). Semantically an-
notated data management plans. [Accessed 2024-04-
03].
Miksa, T., Walk, P., Neish, P., Oblasser, S., Holland, M.,
Renner, T., Jacquemot-Perbal, M.-C., Cardoso, J.,
Kvamme, T., Praetzellis, M., et al. (2021). Appli-
cation Profile for Machine-Actionable Data Manage-
ment Plans.
National Institutes of Health (2023). Data management &
sharing plan. [online]. [Accessed 2023-08-13].
Open Knowledge (2015). Machine-readable. [Accessed
2023-07-17].
OpenAI (2022). ChatGPT (version 3.5). [Accessed 2023-
12-15].
Pergl, R., Hooft, R., Such
´
anek, M., Knaisl, V., and Slifka, J.
(2019). ”Data Stewardship Wizard”: A Tool Bringing
Together Researchers, Data Stewards, and Data Ex-
perts around Data Management Planning. Data Sci-
ence Journal, 18:59.
RDFa Working Group (2013). RDF in Attributes (RDFa).
[Accessed 2023-07-17].
Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019).
Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint arXiv:1910.01108.
Science Europe (2021). Practical guide to the international
alignment of research data management-extended edi-
tion.
Smale, N., Unsworth, K., Denyer, G., and Barr, D. (2018).
The history, advocacy and efficacy of data manage-
ment plans. bioRxiv.
W3C (2012). W3c xml schema definition language (xsd)
1.1. [online]. [Accessed 2023-08-15].
W3C (2017). The extensible stylesheet language family
(xsl). [online]. [Accessed 2023-08-15].
Web Hypertext Application Technology Working Group
(2023). Html - living standard. [online]. [Accessed
2023-12-15].
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
and Brew, J. (2020). Transformers: State-of-the-art
natural language processing. [Accessed 2023-12-15].
DATA 2024 - 13th International Conference on Data Science, Technology and Applications
550