
Elleuch, I., Makni, A., and Bouaziz, R. (2023). Cicaps: a
cooperative intersection collision avoidance persistent
system for cooperative intersection adas. The Journal
of Supercomputing, 79(6):6087–6114.
Garc
´
ıa, M., Urbieta, I., Nieto, M., Gonz
´
alez de Mendibil, J.,
and Otaegui, O. (2022). ildm: An interoperable graph-
based local dynamic map. Vehicles, 4(1):42–59.
Hu, J., Huang, M.-C., and Yu, X. (2020). Efficient mapping
of crash risk at intersections with connected vehicle
data and deep learning models. Accident Analysis &
Prevention, 144:105665.
Idoudi, N., Duvallet, C., Sadeg, B., Bouaziz, R., and
Gargouri, F. (2008). Structural model of real-time
databases: An illustration. In 2008 11th IEEE In-
ternational Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC),
pages 58–65. IEEE.
Karri, S. L., De Silva, L. C., Lai, D. T. C., and Yong, S. Y.
(2021). Classification and prediction of driving be-
haviour at a traffic intersection using svm and knn. SN
computer science, 2:1–11.
Lv, Z., Zhang, S., and Xiu, W. (2020). Solving the security
problem of intelligent transportation system with deep
learning. IEEE Transactions on Intelligent Trans-
portation Systems, 22(7):4281–4290.
Maduako, I., Ebinne, E., Uzodinma, V., Okolie, C., and
Chiemelu, E. (2022). Computing traffic accident high-
risk locations using graph analytics. Spatial informa-
tion research, 30(4):497–511.
Marouane, H., Duvallet, C., Makni, A., Bouaziz, R., and
Sadeg, B. (2018). An uml profile for representing real-
time design patterns. Journal of King Saud University-
Computer and Information Sciences, 30(4):478–497.
Marouane, H., Makni, A., Bouaziz, R., Duvallet, C., and
Sadeg, B. (2016). Definition of design patterns for
advanced driver assistance systems. In Proceedings of
the 10th Travelling Conference on Pattern Languages
of Programs, pages 1–10.
Meena, G., Sharma, D., and Mahrishi, M. (2020). Traf-
fic prediction for intelligent transportation system us-
ing machine learning. In 2020 3rd International Con-
ference on Emerging Technologies in Computer En-
gineering: Machine Learning and Internet of Things
(ICETCE), pages 145–148. IEEE.
Oberoi, K. S., Del Mondo, G., Dupuis, Y., and Vasseur,
P. (2018). Modeling road traffic takes time (short
paper). In 10th International Conference on Ge-
ographic Information Science (GIScience 2018).
Schloss-Dagstuhl-Leibniz Zentrum f
¨
ur Informatik.
Olayode, I. O., Tartibu, L. K., and Okwu, M. O. (2021).
Traffic flow prediction at signalized road intersec-
tions: a case of markov chain and artificial neural net-
work model. In 2021 IEEE 12th International Con-
ference on Mechanical and Intelligent Manufacturing
Technologies (ICMIMT), pages 287–292. IEEE.
Sayed, S. A., Abdel-Hamid, Y., and Hefny, H. A. (2023).
Artificial intelligence-based traffic flow prediction: a
comprehensive review. Journal of Electrical Systems
and Information Technology, 10(1):13.
Shaffiee Haghshenas, S., Guido, G., Vitale, A., and Astarita,
V. (2023). Assessment of the level of road crash sever-
ity: Comparison of intelligence studies. Expert Sys-
tems with Applications, 234:121118.
Singh, M. K., Pathivada, B. K., Rao, K. R., and Perumal, V.
(2022). Driver behaviour modelling of vehicles at sig-
nalized intersection with heterogeneous traffic. IATSS
research, 46(2):236–246.
Wirawan, P. W., Riyanto, D. E., Nugraheni, D. M. K., and
Yasmin, Y. (2019). Graph database schema for mul-
timodal transportation in semarang. Journal of In-
formation Systems Engineering and Business Intelli-
gence, 5(2):163–170.
Yuan, D., Zhou, K., and Yang, C. (2023). Architecture and
application of traffic safety management knowledge
graph based on neo4j. Sustainability, 15(12):9786.
Zhang, L., Jiang, S., Huang, K., Xiao, Y., You, L., and Cai,
M. (2021). Knowledge graph-based network analy-
sis on the elements of autonomous transportation sys-
tem. In 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security Companion
(QRS-C), pages 536–542. IEEE.
Zhang, L., Zhang, M., Tang, J., Ma, J., Duan, X., Sun, J.,
Hu, X., and Xu, S. (2022). Analysis of traffic acci-
dent based on knowledge graph. Journal of advanced
transportation, 2022.
Intelligent Transportation Systems: A Survey on Data Engineering
179