
Choquette-Choo, C. A., Tramer, F., Carlini, N., and Papernot,
N. (2021). Label-only membership inference attacks.
In International conference on machine learning, pages
1964–1974.
Dionysiou, A. and Athanasopoulos, E. (2023). Sok: Member-
ship inference is harder than previously thought. Pro-
ceedings on Privacy Enhancing Technologies, 3:286–
306.
Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
Calibrating noise to sensitivity in private data analysis.
In Proceedings of the Third Conference on Theory of
Cryptography, page 265–284.
Fathalizadeh, A., Moghtadaiee, V., and Alishahi, M. (2023).
Indoor geo-indistinguishability: Adopting differential
privacy for indoor location data protection. IEEE Trans-
actions on Emerging Topics in Computing, pages 1–13.
Fathalizadeh, A., Moghtadaiee, V., and Alishahi, M. (2024).
Indoor location fingerprinting privacy: A comprehen-
sive survey. arXiv:2404.07345.
Hayward, S., van Lopik, K., Hinde, C., and West, A.
(2022). A survey of indoor location technologies, tech-
niques and applications in industry. Internet of Things,
20:100608.
Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., and Zhang,
X. (2022). Membership inference attacks on machine
learning: A survey. ACM Computing Surveys (CSUR),
54(11s):1–37.
Hui, B., Yang, Y., Yuan, H., Burlina, P., Gong, N. Z., and
Cao, Y. (2021). Practical blind membership inference
attack via differential comparisons. arXiv:2101.01341.
Hyeong, J., Kim, J., Park, N., and Jajodia, S. (2022). An
empirical study on the membership inference attack
against tabular data synthesis models. In Proceedings
of the 31st ACM International Conference on Informa-
tion & Knowledge Management, page 4064–4068.
Liu, Y., Zhao, Z., Backes, M., and Zhang, Y. (2022). Mem-
bership inference attacks by exploiting loss trajectory.
In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages
2085–2098.
Moghtadaiee, V., Ghorashi, S. A., and Ghavami, M. (2019).
New reconstructed database for cost reduction in
indoor fingerprinting localization. IEEE Access,
7:104462–104477.
Navidan, H., Moghtadaiee, V., Nazaran, N., and Alishahi, M.
(2022). Hide me behind the noise: Local differential
privacy for indoor location privacy. In IEEE European
Symposium on Security and Privacy Workshops, pages
514–523.
Rahimian, S., Orekondy, T., and Fritz, M. (2020). Sam-
pling attacks: Amplification of membership infer-
ence attacks by repeated queries. arXiv preprint
arXiv:2009.00395.
Roy, P. and Chowdhury, C. (2021). A survey of machine
learning techniques for indoor localization and naviga-
tion systems. Journal of Intelligent
&
Robotic Systems,
101(3):1–34.
Roy, P., Chowdhury, C., Ghosh, D., and Bandyopadhyay,
S. (2019). Juindoorloc: A ubiquitous framework for
smartphone-based indoor localization subject to con-
text and device heterogeneity. Wirel. Pers. Commun.,
106(2):739–762.
Salem, A., Zhang, Y., Humbert, M., Fritz, M., and Backes,
M. (2018). Ml-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models. ArXiv, abs/1806.01246.
Sartayeva, Y. and Chan, H. C. (2023). A survey on indoor po-
sitioning security and privacy. Computers & Security,
131:103293.
Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017).
Membership inference attacks against machine learn-
ing models. In IEEE Symposium on Security and Pri-
vacy, pages 3–18.
Song, B., Deng, M., Pokhrel, S. R., Lan, Q., Doss, R. R. M.,
and Li, G. (2023). Digital privacy under attack: Chal-
lenges and enablers. ArXiv, abs/2302.09258.
Torres-Sospedra, J., Montoliu, R., Mart
´
ınez-Us
´
o, A., Avari-
ento, J. P., Arnau, T. J., Benedito-Bordonau, M., and
Huerta, J. (2014). Ujiindoorloc: A new multi-building
and multi-floor database for wlan fingerprint-based in-
door localization problems. In Conference on Indoor
Positioning and Indoor Navigation (IPIN), pages 261–
270.
Yang, R., Ma, J., Miao, Y., and Ma, X. (2023). Privacy-
preserving generative framework for images against
membership inference attacks. IET Communications,
17(1):45–62.
Zhang, G., Zhang, A., and Zhao, P. (2020). Locmia: Mem-
bership inference attacks against aggregated location
data. IEEE Internet of Things Journal, 7(12):11778–
11788.
Zhang, Z., Wang, T., Li, N., Honorio, J., Backes, M., He, S.,
Chen, J., and Zhang, Y. (2021). PrivSyn: Differentially
private data synthesis. In USENIX Security Symposium,
pages 929–946.
Membership Inference Attacks Against Indoor Location Models
591