
Geyer, R. C., Klein, T., and Nabi, M. (2017). Differentially
private federated learning: A client level perspective.
Kasturi, A., Sivaraju, R., and Hota, C. (2022). Fedpeer:
A peer-to-peer learning framework using federated
learning. In Patgiri, R., Bandyopadhyay, S., Borah,
M. D., and Emilia Balas, V., editors, Edge Analytics,
pages 517–525, Singapore. Springer Singapore.
Kurakin, A., Song, S., Chien, S., Geambasu, R., Terzis, A.,
and Thakurta, A. (2022). Toward training at imagenet
scale with differential privacy.
Luo, S., Fu, S., Luo, Y., Liu, L., Deng, Y., and Wang, S.
(2023). Privacy-preserving federated learning with
hierarchical clustering to improve training on non-iid
data. In Li, S., Manulis, M., and Miyaji, A., editors,
Network and System Security, pages 195–216, Cham.
Springer Nature Switzerland.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In AIS-
TATS, volume 54 of Proceedings of Machine Learning
Research, pages 1273–1282. PMLR.
McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and Arcas, B. A. y. (2016). Communication-efficient
learning of deep networks from decentralized data.
Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V.
(2018). Exploiting unintended feature leakage in col-
laborative learning.
Mironov, I. (2017). R
´
enyi differential privacy. In 2017
IEEE 30th Computer Security Foundations Sympo-
sium (CSF). IEEE.
Nasr, M., Mahloujifar, S., Tang, X., Mittal, P., and
Houmansadr, A. (2023). Effectively using public data
in privacy preserving machine learning. In Krause, A.,
Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and
Scarlett, J., editors, Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
25718–25732. PMLR.
Nguyen, J., Wang, J., Malik, K., Sanjabi, M., and Rabbat,
M. (2023). Where to begin? on the impact of pre-
training and initialization in federated learning.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., K
¨
opf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library.
Pejic, I., Wang, R., and Liang, K. (2022). Effect of ho-
momorphic encryption on the performance of training
federated learning generative adversarial networks.
Ponomareva, N., Hazimeh, H., Kurakin, A., Xu, Z., Deni-
son, C., McMahan, H. B., Vassilvitskii, S., Chien, S.,
and Thakurta, A. G. (2023). How to dp-fy ml: A
practical guide to machine learning with differential
privacy. Journal of Artificial Intelligence Research,
77:1113–1201.
Shenaj, D., Fan
`
ı, E., Toldo, M., Caldarola, D., Tavera,
A., Michieli, U., Ciccone, M., Zanuttigh, P., and
Caputo, B. (2023). Learning across domains and
devices: Style-driven source-free domain adaptation
in clustered federated learning. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 444–454.
Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
(2016). Membership inference attacks against ma-
chine learning models.
Sun, T., Li, D., and Wang, B. (2021). Decentralized feder-
ated averaging.
Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. (2018).
D
2
: Decentralized training over decentralized data.
Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. (2019). A hybrid ap-
proach to privacy-preserving federated learning.
Van der Laan, P. (2001). The 2001 Census in the Nether-
lands: Integration of Registers and Surveys.
Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2016).
Decentralized collaborative learning of personalized
models over networks.
Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farhad, F.,
Jin, S., Quek, T. Q. S., and Poor, H. V. (2019). Fed-
erated learning with differential privacy: Algorithms
and performance analysis.
Yeganeh, Y., Farshad, A., Boschmann, J., Gaus, R.,
Frantzen, M., and Navab, N. (2022). Fedap: Adap-
tive personalization in federated learning for non-iid
data. In Albarqouni, S., Bakas, S., Bano, S., Car-
doso, M. J., Khanal, B., Landman, B., Li, X., Qin,
C., Rekik, I., Rieke, N., Roth, H., Sheet, D., and Xu,
D., editors, Distributed, Collaborative, and Federated
Learning, and Affordable AI and Healthcare for Re-
source Diverse Global Health, pages 17–27, Cham.
Springer Nature Switzerland.
Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine,
D., Prasad, K., Malek, M., Nguyen, J., Ghosh, S.,
Bharadwaj, A., Zhao, J., Cormode, G., and Mironov,
I. (2021). Opacus: User-friendly differential privacy
library in PyTorch. arXiv preprint arXiv:2109.12298.
Zhao, B. Z. H., Kaafar, M. A., and Kourtellis, N. (2020).
Not one but many tradeoffs. In Proceedings of the
2020 ACM SIGSAC Conference on Cloud Computing
Security Workshop. ACM.
SECRYPT 2024 - 21st International Conference on Security and Cryptography
602