
lation extraction for cybersecurity concepts. Infor-
mation and Communications Security: 23rd Interna-
tional Conference, ICICS 2021, Chongqing, China,
page 447–463.
Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional lstm-
crf models for sequence tagging. ArXiv.
Jo, H., Lee, Y., and Shin, S. (2022). Vulcan: Automatic ex-
traction and analysis of cyber threat intelligence from
unstructured text. Computers & Security, 120.
Jordan, B., Piazza, R., and Darley, T. (25 January 2022).
Stix version 2.1.
Kiavash, S., Rigel, G., and N, V. V. (2021). Extractor: Ex-
tracting attack behavior from threat reports. In: IEEE
EuroS&P, pages 598–615.
Kim, G., Lee, C., Jo, J., and Lim, H. (2020). Automatic
extraction of named entities of cyber threats using a
deep bi-lstm-crf network. Int. J. Mach. Learn. & Cy-
ber, 11:2341–2355.
Konkol, M. and Konopík, M. (2015). Segment representa-
tions in named entity recognition. International Con-
ference on Text, Speech and Dialogue, 9302.
Li, Z., Zeng, J., Chen, Y., and Liang, Z. (2022). At-
tackg: Constructing technique knowledge graph from
cyber threat intelligence reports. In Computer Secu-
rity – ESORICS 2022: 27th European Symposium on
Research in Computer Security, Copenhagen, Den-
mark, September 26–30, 2022, Proceedings, Part I,
Lecture Notes in Computer Science. Springer Interna-
tional Publishin.
Lin, C.-H., Kaushik, C., Dyer, E. L., and Muthukumar,
V. (2024). The good, the bad and the ugly sides of
data augmentation: An implicit spectral regularization
perspective. Journal of Machine Learning Research,
25:1–85.
Marchiori, F., Conti, M., and Verde, N. V. (2023). Stixnet:
A novel and modular solution for extracting all stix
objects in cti reports. ARES 23: Proceedings of the
18th International Conference on Availability, Relia-
bility and Security, 2(3):1–11.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., and
Thirion, B. (2011). Scikit-learn: Machine learning
in python. Journal of Machine Learning Research,
12:2825–2830.
Perrina, F., Marchiori, F., Conti, M., and Verde, N. V.
(2023). Agir: Automating cyber threat intelligence
reporting with natural language generation. 2023
IEEE International Conference on Big Data (Big-
Data), pages 3053–3062.
Rani, N., Saha, B., Maurya, V., and Shukla, S. K. (2023a).
Ttphunter: Automated extraction of actionable in-
telligence as ttps from narrative threat reports. In
Australasian Information Security Conference (AISC
2023), page 126–134.
Rani, N., Saha, B., Maurya, V., and Shukla, S. K. (2023b).
Ttphunter: Automated extraction of actionable intel-
ligence as ttps from narrative threat reports. ACSW
’23: Proceedings of the 2023 Australasian Computer
Science Week, page 126–134.
Varghese, V., S, M., and Kb, S. (2023). Extraction of ac-
tionable threat intelligence from dark web data. 2023
International Conference on Control, Communication
and Computing (ICCC), Thiruvananthapuram, India,
pages 1–5.
Wang, X., He, S., Xiong, Z., Wei, X., Jiang, Z., Chen, S.,
and Jiang, J. (2020a). Aptner.
Wang, X., He, S., Xiong, Z., Wei, X., Jiang, Z., Chen, S.,
and Jiang, J. (2022). Aptner: A specific dataset for
ner missions in cyber threat intelligence field. 2022
IEEE 25th International Conference on Computer
Supported Cooperative Work in Design (CSCWD),
Hangzhou, China, pages 1233–1238.
Wang, X., Liu, X., Ao, S., Li, N., Jiang, Z., Xu, Z., Xiong,
Z., Xiong, M., and Zhang, X. (2020b). Dnrti.
Wang, X., Liu, X., Ao, S., Li, N., Jiang, Z., Xu, Z., Xiong,
Z., Xiong, M., and Zhang, X. (2020c). Dnrti: A large-
scale dataset for named entity recognition in threat
intelligence. 2020 IEEE 19th International Confer-
ence on Trust, Security, and Privacy in Computing
and Communications (TrustCom), Guangzhou, China,
pages 1842–1848.
YI, F., JIANG, B., WANG, L., and WU, J. (2020). Cyberse-
curity named entity recognition using multi-modal en-
semble learning. in IEEE Access, 8(10):63214–63224.
Zhou, S., Liu, J., Zhong, X., and Zhao, W. (2021). Named
entity recognition using bert with whole world mask-
ing in cybersecurity domain. 2021 IEEE 6th Inter-
national Conference on Big Data Analytics (ICBDA),
Xiamen, China, pages 316–320.
Zhou, S., Long, Z., Tan, L., and Guo, H. (2018). Auto-
matic identification of indicators of compromise us-
ing neural-based sequence labelling. Proceedings of
the 32nd Pacific Asia Conference on Language, Infor-
mation and Computation, Hong Kong.
Zhou, S., Zhang, J., Jiang, H., Lundh, T., and Ng, A. Y.
(2020). Data augmentation with mobius transforma-
tions. arXiv:2002.02917.
SECRYPT 2024 - 21st International Conference on Security and Cryptography
370