Kim, G. (2019). Subword Language Model for Query Auto-
Completion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages
5022–5032, Hong Kong, China. Association for Com-
putational Linguistics.
Kohavi, R., Tankg, D., and Xu, Y. (2020). Trustworthy
Online Controlled Experiments: A Practical Guide to
A/B Testing - Ron Kohavi, Diane Tang, Ya Xu - Google
Books. Cambridge University Press, Cambridge.
Kritzinger, W. T. and Weideman, M. (2013). Search Engine
Optimization and Pay-per-Click Marketing Strategies.
Journal of Organizational Computing and Electronic
Commerce, 23(3):273–286.
Kruschwitz, U. and Hull, C. (2017). Searching the Enter-
prise. Foundations and Trends® in Information Re-
trieval, 11(1):1–142.
Kruschwitz, U., Lungley, D., Albakour, M. D., and Song,
D. (2013). Deriving query suggestions for site search.
Journal of the American Society for Information Sci-
ence and Technology, 64(10):1975–1994.
Li, H. (2011). A Short Introduction to Learning to Rank.
IEICE Transactions, 94-D:1854–1862.
Li, L., Deng, H., Dong, A., Chang, Y., Baeza-Yates, R.,
and Zha, H. (2017). Exploring query auto-completion
and click logs for contextual-aware web search and
query suggestion. 26th International World Wide Web
Conference, WWW 2017, pages 539–548.
Lucchese, C., Muntean, C., Nardini, F., Perego, R., and
Trani, S. (2020). RankEval: Evaluation and investi-
gation of ranking models. SoftwareX, 12:100614.
Lucchese, C., Muntean, C. I., Nardini, F. M., Perego, R.,
and Trani, S. (2017). RankEval: An evaluation and
analysis framework for learning-To-rank solutions.
SIGIR 2017 - Proceedings of the 40th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1281–1284.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed Representations of Words
and Phrases and their Compositionality. Advances in
Neural Information Processing Systems, 26.
OpenAI 2023 (2023). OpenAI GPT-4.
Pass, G., Chowdhury, A., and Torgeson, C. (2006). A pic-
ture of search. ACM International Conference Pro-
ceeding Series, 152.
Princeton University (2010). About WordNet.
Rahangdale, A. and Raut, S. (2019). Deep Neural Network
Regularization for Feature Selection in Learning-to-
Rank. IEEE Access, 7:53988–54006.
Scott, E. (2022). 9 UX Best Practice Design Patterns for
Autocomplete Suggestions (Only 19% Get Everything
Right) – Articles – Baymard Institute.
Singh, S., Farfade, S., and Comar, P. M. (2023a). Multi-
Objective Ranking to Boost Navigational Suggestions
in eCommerce AutoComplete. ACM Web Conference
2023 - Companion of the World Wide Web Conference,
WWW 2023, pages 469–474.
Singh, S., Farfade, S., and Comar, P. M. (2023b). Multi-
Objective Ranking to Boost Navigational Suggestions
in eCommerce AutoComplete. ACM Web Conference
2023 - Companion of the World Wide Web Conference,
WWW 2023, pages 469–474.
The Apache Software Foundation. (2004). Apache Solr.
Turnbull, D. and Berryman, J. (2016). Relevant Search.
Manning Publications Co., New York.
White, M. (2018). Enterprise search. O’Reilly Media, Se-
bastopol, CA.
White, R. W. and Marchionini, G. (2007). Examining the
effectiveness of real-time query expansion. Informa-
tion Processing & Management, 43(3):685–704.
Xu, J., Wei, Z., Xia, L., Lan, Y., Yin, D., Cheng, X.,
and Wen, J.-R. (2020). Reinforcement Learning to
Rank with Pairwise Policy Gradient. In Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
volume 10, page 10, New York, NY, USA. ACM.
Yadav, N., Sen, R., Hill, D. N., Mazumdar, A., and Dhillon,
I. S. (2021). Session-Aware Query Auto-completion
using Extreme Multi-Label Ranking. Proceedings
of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 3835–
3844.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
26