Iori, M., de Lima, V. L., Martello, S., Miyazaw, F. K.,
and Monaci, M. (2021). Exact solution techniques
for two-dimensional cutting and packing. European
Journal of Operational Research, 289(2):399–415.
doi:10.1016/j.ejor.2020.06.050.
Iori, M., de Lima, V. L., Martello, S., and Monaci, M.
(2022). 2DPackLib: A two-dimensional cutting and
packing library. Optimization Letters, 16(2):471–480.
doi:10.1007/s11590-021-01808-y.
Johnson, D. S., Papadimitriou, C. H., and Yannakakis,
M. (1988). How easy is local search? Jour-
nal of Computer and System Sciences, 37(1):79–100.
doi:10.1016/0022-0000(88)90046-3.
Kierkosz, I. and Luczak, M. (2013). A hybrid evolutionary
algorithm for the two-dimensional packing problem.
Central European Journal of Operations Research,
22(4):729–753.
Lee, L.-S. (2008). A genetic algorithm for two-
dimensional bin packing problem. MathDigest: Re-
search Bulletin of Institute for Mathematical Re-
search, 2(1):34–39. http://psasir.upm.edu.my/id/
eprint/12464/1/Artikel 6 vol2 no1.pdf.
Li, X. and Zhang, K. (2018). Single batch process-
ing machine scheduling with two-dimensional
bin packing constraints. International Jour-
nal of Production Economics, 196:113–121.
doi:10.1016/j.ijpe.2017.11.015.
Li, Y., Sang, H., Xiong, X., and Li, Y. (2021).
An improved adaptive genetic algorithm for two-
dimensional rectangular packing problem. Applied
Sciences, 11(1):413. doi:10.3390/app11010413.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., Thom-
son, S. L., and Weise, T. (2024). Addressing the
traveling salesperson problem with frequency fitness
assignment and hybrid algorithms. Soft Computing.
doi:10.1007/s00500-024-09718-8.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., and
Weise, T. (2022). Solving the traveling salesper-
son problem using frequency fitness assignment. In
Ishibuchi, H., Kwoh, C., Tan, A., Srinivasan, D.,
Miao, C., Trivedi, A., and Crockett, K. A., edi-
tors, IEEE Symposium Series on Computational In-
telligence (SSCI’22), December 4–7, 2022, Singa-
pore, pages 360–367, Piscataway, NJ, USA. IEEE.
doi:10.1109/SSCI51031.2022.10022296.
Liu, D. and Teng, H. (1999). An improved BL-algorithm for
genetic algorithm of the orthogonal packing of rect-
angles. European Journal of Operational Research,
112(2):413–420. doi:10.1016/S0377-2217(97)00437-
2.
Lodi, A., Martello, S., and Vigo, D. (2002). Recent
advances on two-dimensional bin packing problems.
Discrete Applied Mathematics, 123(1–3):379–396.
doi:10.1016/S0166-218X(01)00347-X.
Lodi, A., Martello, S., and Vigo, D. (2004).
TSpack: A unified tabu search code for multi-
dimensional bin packing problems. Annals
of Operations Research, 131(1–4):203–213.
doi:10.1023/B:ANOR.0000039519.03572.08.
Ma, N. and Zhou, Z. (2017). Mixed-integer program-
ming model for two-dimensional non-guillotine bin
packing problem with free rotation. In 4th Interna-
tional Conference on Information Science and Control
Engineering (ICISCE), July 21-23, 2017, Changsha,
China, pages 456–460, Piscataway, NJ, USA. IEEE.
doi:10.1109/ICISCE.2017.102.
Macedo, R., Alves, C., and Val
´
erio de Carvalho,
J. M. (2010). Arc-flow model for the two-
dimensional guillotine cutting stock problem. Com-
puters & Operations Research, 37(6):991–1001.
doi:10.1016/j.cor.2009.08.005.
Martello, S. and Vigo, D. (1998). Exact solution of the two-
dimensional finite bin packing problem. Management
Science, 44(3):388–399. doi:10.1287/mnsc.44.3.388.
Monaci, M. and Toth, P. (2006). A set-covering-
based heuristic approach for bin-packing problems.
INFORMS Journal on Computing, 18(1):1–134.
doi:10.1287/ijoc.1040.0089.
Neumann, F. and Wegener, I. (2007). Randomized lo-
cal search, evolutionary algorithms, and the minimum
spanning tree problem. Theoretical Computer Sci-
ence, 378(1):32–40. doi:10.1016/j.tcs.2006.11.002.
Parre
˜
no, F., Alvarez-Vald
´
es, R., Oliveira, J. F., and
Tamarit, J. M. (2010). A hybrid GRASP/VND al-
gorithm for two- and three-dimensional bin pack-
ing. Annals of Operations Research, 179(1):203–220.
doi:10.1007/s10479-008-0449-4.
Pejic, I. and van den Berg, D. (2020). Monte carlo
tree search on perfect rectangle packing problem in-
stances. In Coello, C. A. C., editor, Genetic and
Evolutionary Computation Conference (GECCO’20),
Companion Volume, July July 8-12, 2020, Canc
´
un,
Mexico, pages 1697–1703, New York, NY, USA.
ACM. doi:10.1145/3377929.3398115.
Pinto, M., Silva, C., Th
¨
urer, M., and Moniz, S. (2024).
Survey in operations research and management sci-
ence. nesting and scheduling optimization of addi-
tive manufacturing systems: Mapping the territory.
Computers & Operations Research, 165(106592).
doi:10.1016/j.cor.2024.106592.
Russell, S. J. and Norvig, P. (2002). Artificial Intelligence:
A Modern Approach (AIMA). Prentice Hall Interna-
tional Inc., Upper Saddle River, NJ, USA, 2 edition.
Terashima-Mar
´
ın, H., Z
´
arate, C. J. F., Ross, P., and
Valenzuela-Rend
´
on, M. (2007). Comparing two
models to generate hyper-heuristics for the 2D-
regular bin-packing problem. In Lipson, H., edi-
tor, Genetic and Evolutionary Computation Confer-
ence (GECCO’07), July 7-11, 2007, London, UK,
pages 2182–2189, New York, NY, USA. ACM.
doi:10.1145/1276958.1277377.
van den Berg, D., Braam, F., Moes, M., Suilen, E., and
Bhulai, S. (2016). Almost squares in almost squares:
Solving the final instance. In Bhulai, S. and Se-
manjski, I., editors, DATA ANALYTICS 2016: The
Fifth International Conference on Data Analytics, Oc-
tober 9-13, 2026, Venice, Italy, Wilmington, DE,
USA. International Academy, Research, and Indus-
try Association (IARIA). https://math.vu.nl/
∼
sbhulai/
publications/data analytics2016b.pdf.
Weise, T., Chiong, R., Tang, K., L
¨
assig, J., Tsutsui, S.,
Chen, W., Michalewicz, Z., and Yao, X. (2014a).
Randomized Local Search for Two-Dimensional Bin Packing and a Negative Result for Frequency Fitness Assignment
25