Research, 139(1):65–94. doi:10.1007/S10479-005-
3444-Z.
Elshafei, A. N. (1977). Hospital layout as a quadratic as-
signment problem. Operations Research Quarterly,
28:167–179.
Eschermann, B. and Wunderlich, H. (1990). Opti-
mized synthesis of self-testable finite state machines.
In 20th International Symposium on Fault-Tolerant
Computing (FFTCS’20), June 26–28, 1990, New-
castle upon Tyne, UK, Piscataway, NJ, USA. IEEE.
doi:10.1109/FTCS.1990.89393.
Fleurent, C. and Ferland, J. A. (1993). Genetic hybrids
for the quadratic assignment problem. In Pardalos,
P. M. and Wolkowicz, H., editors, Quadratic Assign-
ment and Related Problems, Proceedings of a DI-
MACS Workshop, May 20–21, 1993, pages 173–187,
Providence, RI, USA. American Mathematical Soci-
ety.
Gambardella, L., Taillard,
´
E. D., and Dorigo, M. (1999).
Ant colonies for the quadratic assignment prob-
lem. Journal of the Operational Research Society,
50(2):167–176. doi:10.1057/palgrave.jors.2600676.
Glover, F. W. and Taillard,
´
E. D. (1993). A user’s guide
to tabu search. Annals of Operational Research,
41(1):1–28. doi:10.1007/BF02078647.
Goldberg, D. E. and Richardson, J. T. (1987). Genetic algo-
rithms with sharing for multimodal function optimiza-
tion. In Grefenstette, J. J., editor, 2nd International
Conference on Genetic Algorithms and their Applica-
tions, July 28–31, 1987, Cambridge, MA, USA, pages
41–49, East Sussex, England, UK. Psychology Press.
Gravina, D., Liapis, A., and Yannakakis, G. N. (2016).
Surprise search: Beyond objectives and novelty. In
Friedrich, T., Neumann, F., and Sutton, A. M., edi-
tors, Genetic and Evolutionary Computation Confer-
ence (GECCO’16), July 20–24, 2016, Denver, CO,
USA, pages 677–684, New York, NY, USA. ACM.
doi:10.1145/2908812.2908817.
Gravina, D., Liapis, A., and Yannakakis, G. N. (2019).
Quality diversity through surprise. IEEE Transac-
tions on Evolutionary Computation, 23(4):603–616.
doi:10.1109/TEVC.2018.2877215.
Hadley, S. W., Rendl, F., and Wolkowicz, H. (1992). A new
lower bound via projection for the quadratic assign-
ment problem. Mathematics of Operations Research,
17(3):727–739.
Hafiz, F. M. F. and Abdennour, A. (2016). Parti-
cle swarm algorithm variants for the quadratic as-
signment problems – A probabilistic learning ap-
proach. Expert Systems with Applications, 44:413–
431. doi:10.1016/J.ESWA.2015.09.032.
Hahn, P. and Anjos, M. (2018). Website for “QAPLIB – A
Quadratic Assignment Problem Library”. Polytech-
nique Montr
´
eal, Montr
´
eal, Canada. https://qaplib.mgi.
polymtl.ca.
Horng, J., Chen, C. C., Liu, B., and Kao, C. (2000).
Resolution of quadratic assignment problems us-
ing an evolutionary algorithm. In Zalzala, A.
M. S., editor, Congress on Evolutionary Computa-
tion (CEC’00), July 16–19, 2000, La Jolla, CA,
USA, pages 902–909, Piscataway, NJ, USA. IEEE.
doi:10.1109/CEC.2000.870736.
Koopmans, T. C. and Beckmann, M. (1957). Assign-
ment problems and the location of economic activi-
ties. Econometrica: Journal of the Econometric Soci-
ety, 25(1):53–76. doi:10.2307/1907742.
Krarup, J. and Pruzan, P. M. (1978). Computer-aided layout
design. Mathematical Programming Study, 9:75–94.
Lehman, J. and Stanley, K. O. (2008). Exploiting open-
endedness to solve problems through the search for
novelty. In Bullock, S., Noble, J., Watson, R. A.,
and Bedau, M. A., editors, Eleventh International
Conference on the Synthesis and Simulation of Liv-
ing Systems (ALIFE’08), August 5–8, 2008, Winch-
ester, UK, pages 329–336, Cambridge, MA, USA.
MIT Press. http://mitpress2.mit.edu/books/chapters/
0262287196chap43.pdf.
Lehman, J. and Stanley, K. O. (2011a). Abandoning ob-
jectives: Evolution through the search for novelty
alone. Evolutionary Computation, 19(2):189–223.
doi:10.1162/EVCO A 00025.
Lehman, J. and Stanley, K. O. (2011b). Evolving a di-
versity of virtual creatures through novelty search
and local competition. In Krasnogor, N. and Lanzi,
P. L., editors, 13th Annual Genetic and Evolution-
ary Computation Conference (GECCO’11), July 12–
16, 2011, Dublin, Ireland, pages 211–218, New York,
NY, USA. ACM. doi:10.1145/2001576.2001606.
Li, Y. and Pardalos, P. M. (1992). Generating quadratic as-
signment test problems with known optimal permuta-
tions. Computational Optimization and Applications,
1(2):163–184. doi:10.1007/BF00253805.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., Thom-
son, S. L., and Weise, T. (2024). Addressing the
traveling salesperson problem with frequency fitness
assignment and hybrid algorithms. Soft Computing.
doi:10.1007/s00500-024-09718-8.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., and
Weise, T. (2022). Solving the traveling salesper-
son problem using frequency fitness assignment. In
Ishibuchi, H., Kwoh, C., Tan, A., Srinivasan, D.,
Miao, C., Trivedi, A., and Crockett, K. A., edi-
tors, IEEE Symposium Series on Computational In-
telligence (SSCI’22), December 4–7, 2022, Singa-
pore, pages 360–367, Piscataway, NJ, USA. IEEE.
doi:10.1109/SSCI51031.2022.10022296.
Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto,
P. O., Hahn, P., and Querido, T. (2007). A sur-
vey for the quadratic assignment problem. Euro-
pean Journal of Operational Research, 176(2):657–
690. doi:10.1016/j.ejor.2005.09.032.
Mahfoud, S. W. (1997). Niching methods. In B
¨
ack, T., Fo-
gel, D. B., and Michalewicz, Z., editors, Handbook of
Evolutionary Computation, pages C6.1:1–4. Institute
of Physics Publishing, Bristol, UK. ISBN: 0-7503-
0392-1.
Merz, P. and Freisleben, B. (1999). A comparison of
memetic algorithms, tabu search, and ant colonies for
the quadratic assignment problem. In Congress on
Evolutionary Computation (CEC’99), July 6–9, 1999,
Frequency Fitness Assignment: Optimization Without Bias for Good Solution Outperforms Randomized Local Search on the Quadratic
Assignment Problem
35