REFERENCES
Anagnostopoulos, A., Michel, L., Van Hentenryck, P., and
Vergados, Y. (2006). A simulated annealing approach
to the traveling tournament problem. Journal of
Scheduling, 9(2):177–193. doi:10.1007/S10951-006-
7187-8.
Anderson, J. (2000). A survey of multiobjective optimiza-
tion in engineering design. Technical Report LiTH-
IKP-R-1097, Link
¨
oping University, Department of
Mechanical Engineering, Link
¨
oping, Sweden. https:
//www.researchgate.net/publication/228584672.
Brand
˜
ao, F. and Pedroso, J. P. (2014). A complete search
method for the relaxed traveling tournament problem.
EURO Journal on Computational Optimization, 2(1-
2):77–86. doi:10.1007/s13675-013-0010-3.
Chen, P., Kendall, G., and Vanden Berghe, G. (2007). An
ant based hyper-heuristic for the travelling tournament
problem. In IEEE Symposium on Computational Intel-
ligence in Scheduling (CISched’07), April 2–4, 2007,
Honolulu, HI, USA, pages 19–26, Piscataway, NJ,
USA. IEEE. doi:10.1109/SCIS.2007.367665.
Choubey, N. S. (2010). A novel encoding scheme for travel-
ing tournament problem using genetic algorithm. In-
ternational Journal of Computer Applications (IJCA),
Special Issue on “Evolutionary Computation for Op-
timization Techniques” (ECOT’10)(2):79–82. https:
//www.ijcaonline.org/ecot/number2/SPE139T.pdf.
de Bruin, E., Thomson, S. L., and van den Berg, D.
(2023). Frequency fitness assignment on JSSP: A
critical review. In Correia, J., Smith, S. L., and
Qaddoura, R., editors, Proceedings of the 26th Eu-
ropean Conference on Applications of Evolutionary
Computation (EvoApplications’23), Held as Part of
EvoStar 2023, April 12-14, 2023, Brno, Czech Repub-
lic, volume 13989 of Lecture Notes in Computer Sci-
ence, pages 351–363, Cham, Switzerland. Springer.
doi:10.1007/978-3-031-30229-9
23.
de Werra, D. (1988). Some models of graphs for scheduling
sports sompetitions. Discrete Applied Mathematics,
21(1):47–65. doi:10.1016/0166-218X(88)90033-9.
Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. (2000).
A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: NSGA-II. In Schoe-
nauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E.,
Merelo-Guerv
´
os, J. J., and Schwefel, H., editors, Pro-
ceedings of the 6th International Conference on Paral-
lel Problem Solving from Nature (PPSN VI), Septem-
ber 18–20, 2000, Paris, France, volume 1917/2000
of Lecture Notes in Computer Science (LNCS), pages
849–858, Berlin, Germany. Springer-Verlag GmbH.
doi:10.1007/3-540-45356-3 83.
Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197. doi:10.1109/4235.996017.
Easton, K., Nemhauser, G. L., and Trick, M. A. (2001).
The traveling tournament problem description and
benchmarks. In Walsh, T., editor, Proceedings
of the 7th International Conference on Principles
and Practice of Constraint Programming (CP’01),
November 26–December 1, 2001, Paphos, Cyprus,
volume 2239 of Lecture Notes in Computer Sci-
ence, pages 580–584, Berlin/Heidelberg, Germany.
Springer. doi:10.1007/3-540-45578-7 43.
George, A., Razak, A., and Wilson, N. (2015). The
comparison of multi-objective preference inference
based on lexicographic and weighted average mod-
els. In 27th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’15), Novem-
ber 9–11, 2015, Vietri sul Mare, Italy, pages 88–
95, Piscataway, NJ, USA. IEEE Computer Society.
doi:10.1109/ICTAI.2015.26.
Johnson, D. S., Papadimitriou, C. H., and Yannakakis,
M. (1988). How easy is local search? Jour-
nal of Computer and System Sciences, 37(1):79–100.
doi:10.1016/0022-0000(88)90046-3.
Khelifa, M. and Boughaci, D. (2016). Hybrid harmony
search combined with variable neighborhood search
for the traveling tournament problem. In Nguyen,
N. T., Manolopoulos, Y., Iliadis, L. S., and Traw-
inski, B., editors, Computational Collective Intel-
ligence - 8th International Conference (ICCCI’16),
September 28–30, 2016, Halkidiki, Greece, Part I,
volume 9875 of Lecture Notes in Computer Sci-
ence, pages 520–530, Cham, Switzerland. Springer.
doi:10.1007/978-3-319-45243-2 48.
Khelifa, M. and Boughaci, D. (2018). A cooperative lo-
cal search method for solving the traveling tournament
problem. Computing and Informatics, 37(6):1386–
1410. doi:10.4149/CAI 2018 6 1386.
Khelifa, M., Boughaci, D., and A
¨
ımeur, E. (2017). An en-
hanced genetic algorithm with a new crossover oper-
ator for the traveling tournament problem. In 4th In-
ternational Conference on Control, Decision and In-
formation Technologies (CoDIT’17), April 5–7, 2017,
Barcelona, Spain, pages 1072–1077, Piscataway, NJ,
USA. IEEE. doi:10.1109/CODIT.2017.8102741.
Larra
˜
naga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I.,
and Dizdarevic, S. (1999). Genetic algorithms for the
travelling salesman problem: A review of represen-
tations and operators. Artificial Intelligence Review,,
13(2):129–170. doi:10.1023/A:1006529012972.
Larra
˜
naga, P., Kuijpers, C. M. H., Poza, M., and Murga,
R. H. (1997). Decomposing bayesian networks:
Triangulation of the moral graph with genetic al-
gorithms. Statistics and Computing, 7(1):19–34.
doi:10.1023/A:1018553211613.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., Thom-
son, S. L., and Weise, T. (2024). Addressing the
traveling salesperson problem with frequency fitness
assignment and hybrid algorithms. Soft Computing.
doi:10.1007/s00500-024-09718-8.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., and
Weise, T. (2022). Solving the traveling salesper-
son problem using frequency fitness assignment. In
Ishibuchi, H., Kwoh, C., Tan, A., Srinivasan, D.,
Miao, C., Trivedi, A., and Crockett, K. A., edi-
tors, IEEE Symposium Series on Computational In-
telligence (SSCI’22), December 4–7, 2022, Singa-
pore, pages 360–367, Piscataway, NJ, USA. IEEE.
doi:10.1109/SSCI51031.2022.10022296.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
48