Estatal de Investigacio´n (AEI) Ministerio de
Econom´ıa, Industria y Competitividad (MINECO),
and the Fondo Europeo de Desarrollo Regional
(FEDER) through the research projects
PID2021122132OB-C21 and TED2021-129512B-
I00; and by the Generalitat de Catalunya through the
research project 2021-SGR-01044.
REFERENCES
Dou, B., Qu, T., Lei, L. and Zeng, P., (2020). Optimization
of wind turbine yaw angles in a wind farm using a
three-dimensional yawed wake model. Energy, 209,
p.118415.
Ding, P., Wang, H., Bao, W., and Hong, R. (2019).
Hygpmsam based model for slewing bearing residual
useful life prediction. Measurement, 141:162–175.
Dhibi, K., Mansouri, M., Bouzrara, K., Nounou, H. and
Nounou, M., (2022). Reduced neural network based
ensemble approach for fault detection and diagnosis of
wind energy converter systems. Renewable Energy,
194, pp.778-787.
Fathy, A., Rezk, H., Yousri, D., Kandil, T. and Abo-Khalil,
A.G., (2022). Real-time bald eagle search approach for
tracking the maximum generated power of wind energy
conversion system. Energy, 249, p.123661.
Gao, Z., Cecati, C., and Ding, S. X. (2015a). A survey of
fault diagnosis and fault-tolerant techniques—part i:
Fault diagnosis with model-based and signal-based
approaches. IEEE transactions on industrial
electronics, 62(6):3757–3767.
Gao, Z., Cecati, C., and Ding, S. X. (2015b). A survey of
fault diagnosis and fault-tolerant techniques—part i:
Fault diagnosis with model-based and signal-based
approaches. IEEE transactions on industrial
electronics, 62(6):3757–3767.
Heidari, M., Homaei, H., Golestanian, H., and Heidari, A.
(2016). Fault diagnosis of gearboxes using wavelet
support vector machine, least square support vector
machine and wavelet packet transform. Journal of
Vibroengineering, 18(2):860–875
Hsu, J.-Y., Wang, Y.-F., Lin, K.-C., Chen, M.-Y., and Hsu,
J. H.-Y. (2020). Wind turbine fault diagnosis and
predictive maintenance through statistical process
control and machine learning. Ieee Access, 8:23427–
23439.
Kanjiya, P., Ambati, B. B., and Khadkikar, V. (2013). A
novel fault-tolerant dfig-based wind energy conversion
system for seamless operation during grid faults. IEEE
Transactions on Power Systems, 29(3):1296– 1305.
Kaveh, M., Mesgari, M.S. and Saeidian, B., (2023).
Orchard Algorithm (OA): A new meta-heuristic
algorithm for solving discrete and continuous
optimization problems. Mathematics and Computers in
Simulation, 208, pp.95-135.
Kong, X., Xu, T., Ji, J., Zou, F., Yuan, W., and Zhang, L.
(2021). Wind turbine bearing incipient fault diagnosis
based on adaptive exponential wavelet threshold
function with improved cpso. Ieee Access, 9:122457–
122473.
Leng, X.L., Miao, X.A. and Liu, T., (2021). Using
recurrent neural network structure with enhanced
multi-head self-attention for sentiment analysis.
Multimedia Tools and Applications, 80, pp.12581-
12600.
Li, Y., Wei, K., Yang, W. and Wang, Q., (2020).
Improving wind turbine blade based on multi-objective
particle swarm optimization. Renewable Energy, 161,
pp.525-542
Li, H., Yang, C., Hu, Y., Zhao, B., Zhao, M., and Chen, Z.
(2014). Fault-tolerant control for current sensors of
doubly fed induction generators based on an improved
fault detection method. Measurement, 47:929–937.
Qi, H., Han, Y., Tuo, S., and Zhao, Q. (2023). Fault
diagnosis in wind turbines based on weighted joint
domain adversarial network under various working
conditions. IEEE Sensors Journal.
Riera-Guasp, M., Antonino-Daviu, J. A., and Capolino, G.
A. (2014). Advances in electrical machine, power
electronic, and drive condition monitoring and fault
detection: State of the art. IEEE Transactions on
Industrial Electronics, 62(3):1746–1759.
Sae-Kok, W., Grant, D., and Williams, B. (2010). System
reconfiguration under open-switch faults in a doubly
fed induction machine. IET Renewable Power
Generation, 4(5):458–470.
Shi, F. and Patton, R. (2015). An active fault tolerant
control approach to an offshore wind turbine model.
Renewable Energy, 75:788–798.
Tuerxun, W., Chang, X., Hongyu, G., Zhijie, J., and
Huajian, Z. (2021). Fault diagnosis of wind turbines
based on a support vector machine optimized by the
sparrow search algorithm. Ieee Access, 9:69307–69315.
Tumari, M.Z.M., Ahmad, M.A., Suid, M.H. and Ghazali,
M.R., (2022), December. Data-driven control based on
marine predators algorithm for optimal tuning of the
wind plant. In 2022 IEEE International Conference on
Power and Energy (PECon) (pp. 203-208). IEEE.
Xiahou, K.S., Liu, Y., Li, M.S. and Wu, Q.H., (2020).
Sensor fault-tolerant control of DFIG based wind
energy conversion systems. International Journal of
Electrical Power & Energy Systems, 117, p.105563.
Zare, S. and Ayati, M. (2021). Simultaneous fault diagnosis
of wind turbine using multichannel convolutional
neural networks. ISA transactions, 108:230–239.
Zhang, L., Zhang, H., and Cai, G. (2022). The multiclass
fault diagnosis of wind turbine bearing based on
multisource signal fusion and deep learning generative
model. IEEE Transactions on Instrumentation and
Measurement, 71:1–12.
Zhang, W., Xu, D., Enjeti, P. N., Li, H., Hawke, J. T., and
Krishnamoorthy, H. S. (2014). Survey on fault-tolerant
techniques for power electronic converters. IEEE
Transactions on Power Electronics, 29(12):6319–6331.