REFERENCES
Ajami, H., Mcheick, H., and Laprise, C. (2022). First steps
of asthma management with a personalized ontology
model. Future Internet, 14(7):190.
Alharbi, E., Cherif, A., and Nadeem, F. (2023). Adaptive
smart ehealth framework for personalized asthma at-
tack prediction and safe route recommendation. Smart
Cities, 6(5):2910–2931.
Alharbi, E., Nadeem, F., and Cherif, A. (2021). Smart
healthcare framework for asthma attack prediction and
prevention. In 2021 National Computing Colleges
Conference (NCCC), pages 1–6. IEEE.
Anantharam, P., Banerjee, T., Sheth, A., Thirunarayan,
K., Marupudi, S., Sridharan, V., and Forbis, S. G.
(2015). Knowledge-driven personalized contextual
mhealth service for asthma management in children.
In 2015 IEEE international conference on mobile ser-
vices, pages 284–291. IEEE.
Barbaglia, G., Murzilli, S., and Cudini, S. (2017). Defini-
tion of rest web services with json schema. Software:
Practice and Experience, 47(6):907–920.
Bose, S., Kenyon, C. C., and Masino, A. J. (2021). Per-
sonalized prediction of early childhood asthma per-
sistence: a machine learning approach. PloS one,
16(3):e0247784.
Chatterjee, A., Gerdes, M. W., and Martinez, S. G. (2020).
Identification of risk factors associated with obesity
and overweight—a machine learning overview. Sen-
sors, 20(9):2734.
Chatterjee, A., Gerdes, M. W., Prinz, A., and Martinez,
S. G. (2021a). Comparing performance of ensemble-
based machine learning algorithms to identify poten-
tial obesity risk factors from public health datasets. In
Emerging Technologies in Data Mining and Informa-
tion Security: Proceedings of IEMIS 2020, Volume 1,
pages 253–269. Springer.
Chatterjee, A., Pahari, N., and Prinz, A. (2022a). Hl7
fhir with snomed-ct to achieve semantic and structural
interoperability in personal health data: a proof-of-
concept study. Sensors, 22(10):3756.
Chatterjee, A., Pahari, N., Prinz, A., and Riegler, M.
(2022b). Machine learning and ontology in ecoach-
ing for personalized activity level monitoring and
recommendation generation. Scientific Reports,
12(1):19825.
Chatterjee, A. and Prinz, A. (2022). Personalized recom-
mendations for physical activity e-coaching (ontore-
comodel): ontological modeling. JMIR Medical In-
formatics, 10(6):e33847.
Chatterjee, A., Prinz, A., Gerdes, M., and Martinez, S.
(2021b). An automatic ontology-based approach to
support logical representation of observable and mea-
surable data for healthy lifestyle management: Proof-
of-concept study. Journal of Medical Internet Re-
search, 23(4):e24656.
Chatterjee, A., Prinz, A., Riegler, M. A., and Meena, Y. K.
(2023). An automatic and personalized recommenda-
tion modelling in activity ecoaching with deep learn-
ing and ontology. Scientific Reports, 13(1):10182.
Cima, G., De Giacomo, G., Lenzerini, M., and Poggi, A.
(2017). On the sparql metamodeling semantics entail-
ment regime for owl 2 ql ontologies. In Proceedings of
the 7th International Conference on Web Intelligence,
Mining and Semantics, pages 1–6.
Dataset, A. D. P. (2024).
https://www.kaggle.com/datasets/deepayanthakur/
asthma-disease-prediction.
Garreau, D. and Luxburg, U. (2020). Explaining the ex-
plainer: A first theoretical analysis of lime. In Interna-
tional conference on artificial intelligence and statis-
tics, pages 1287–1296. PMLR.
Hutchinson, C. F. (1982). Classification improvement.
Photogrammetric Engineering and Remote Sensing,
44(1):123–130.
Kadariya, D., Venkataramanan, R., Yip, H. Y., Kalra, M.,
Thirunarayanan, K., and Sheth, A. (2019). kbot:
knowledge-enabled personalized chatbot for asthma
self-management. In 2019 IEEE International Con-
ference on Smart Computing (SMARTCOMP), pages
138–143. IEEE.
Morita, P. P., Yeung, M. S., Ferrone, M., Taite, A. K., Made-
ley, C., Lavigne, A. S., To, T., Lougheed, M. D.,
Gupta, S., Day, A. G., et al. (2019). A patient-
centered mobile health system that supports asthma
self-management (breathe): design, development, and
utilization. JMIR mHealth and uHealth, 7(1):e10956.
Olson, R. S. and Moore, J. H. (2016). Tpot: A tree-
based pipeline optimization tool for automating ma-
chine learning. In Workshop on automatic machine
learning, pages 66–74. PMLR.
OpenWeather (2024). https://openweathermap.org/api.
Pinnock, H., Noble, M., Lo, D., McClatchey, K., Marsh,
V., and Hui, C. Y. (2023). Personalised management
and supporting individuals to live with their asthma in
a primary care setting. Expert review of respiratory
medicine, 17(7):577–596.
WHO (2019). https://www.who.int/news-room/fact-
sheets/detail/asthma.
KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development
134