human activity recognition based on two-level
classifier and compact CNN model. In T. F. Bastos-
Filho, E. M. de Oliveira Caldeira, & A. Frizera-Neto
(Eds.), XXVII Brazilian Congress on Biomedical
Engineering: CBEB 2020 (Vol. 83, pp. 1944-1953).
Springer, Cham. https://doi.org/10.1007/978-3-030-
70601-2_276
Collins, K., Reilly, T., Malone, S., Keane, J., & Doran, D.
(2022). Science and Hurling: A review. Sports, 10(8),
118. https://doi.org/10.3390/sports10080118
Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S.
(2019). Machine and deep learning for sport-specific
movement recognition: a systematic review of model
development and performance. Journal of sports
sciences, 37(5), 568–600. https://doi.org/10.1080/0264
0414.2018.1521769
Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S.
(2021). Classification of Australian football kick types
in-situation via ankle-mounted inertial measurement
units. Journal of sports sciences, 39(12), 1330–1338.
https://doi.org/10.1080/02640414.2020.1868678
Crenna, F., Rossi, G. B., & Berardengo, M. (2021).
Filtering biomechanical signals in movement analysis.
Sensors, 21(13), 4580. https://doi.org/10.3390/s211345
80
de Cheveigné, A., & Nelken, I. (2019). Filters: When, Why,
and How (Not) to Use Them. Neuron, 102(2), 280–293.
https://doi.org/10.1016/j.neuron.2019.02.039
Dehkordi, M. B., Zaraki, A., & Setchi, R. (2020). Feature
extraction and feature selection in smartphone-based
activity recognition. Procedia Computer Science, 176.
2655-2664. https://doi.org/10.1016/j.procs.2020.09.301
Davoudi, A., Mardini, M. T., Nelson, D., Albinali, F.,
Ranka, S., Rashidi, P., & Manini, T. M. (2021). The
Effect of Sensor Placement and Number on Physical
Activity Recognition and Energy Expenditure
Estimation in Older Adults: Validation Study. JMIR
mHealth and uHealth, 9(5), e23681. https://doi.org/10.
2196/23681
Dehghani, A., Glatard, T., & Shihab, E. (2019). Subject
Cross Validation in Human Activity
Recognition. ArXiv, abs/1904.02666.
https://doi.org/10.48550/arXiv.1904.02666
Erdaş, Ç. B., Atasoy, I., Açıcı, K., & Oğul, H. (2016).
Integrating features for accelerometer-based activity
recognition. Procedia Computer Science, 98, 522-527.
https://doi.org/10.1016/j.procs.2016.09.070
Fridolfsson, J., Börjesson, M., Buck, C., Ekblom, Ö.,
Ekblom-Bak, E., Hunsberger, M., Lissner, L., &
Arvidsson, D. (2019). Effects of Frequency Filtering on
Intensity and Noise in Accelerometer-Based Physical
Activity Measurements. Sensors (Basel,
Switzerland), 19(9), 2186. https://doi.org/10.3390/s
19092186
Ghazali, N. F., As’ari, M. A., Shahar, N., & Latip, H. F. M.
(2018). Investigation on the effect of different window
size in segmentation for common sport activity. In 2018
International Conference on Smart Computing and
Electronic Enterprise (ICSCEE) (pp. 1-7). Shah Alam,
Malaysia. IEEE. https://doi.org/10.1109/ICSCEE.
2018.8538429
Gil-Martín, M., San-Segundo, R., Fernández-Martínez, F.,
& de Córdoba, R. (2020). Human activity recognition
adapted to the type of movement. Computers &
Electrical Engineering, 88, 106822. https://doi.org/10.
1016/j.compeleceng.2020.106822
Gomaa, W., & Khamis, M.A. (2023) A perspective on
human activity recognition from inertial motion
data. Neural Computing & Application, 35, 20463–
20568. https://doi.org/10.1007/s00521-023-08863-9
Hendry, D., Chai, K., Campbell, A., Hopper, L., O'Sullivan,
P., & Straker, L. (2020). Development of a Human
Activity Recognition System for Ballet Tasks. Sports
medicine - open, 6(1), 10. https://doi.org/10.1186/
s40798-020-0237-5
Hölzemann, A., & Van Laerhoven, K. (2018). Using Wrist-
Worn Activity Recognition for Basketball Game
Analysis. In iWOAR '18: Proceedings of the 5th
International Workshop on Sensor-based Activity
Recognition and Interaction, 1-6. https://doi.org/10.
1145/3266157.3266217
Hsu, Y., Yang, S., Chang, H., & Lai, H. (2018). Human
Daily and Sport Activity Recognition Using a Wearable
Inertial Sensor Network. IEEE Access, 6, 31715-31728.
https://doi.org/10.1109/ACCESS.2018.2839766
Keane, J., Malone, S., Keogh, C., Young, D., Coratella, G.,
& Collins, K. A. (2021). Comparison of
Anthropometric and Performance Profiles between
Elite and Sub-Elite Hurling Players. Applied Sciences,
11(3):954. https://doi.org/10.3390/app11030954
Kranzinger, C., Bernhart, S., Kremser, W., Venek, V.,
Rieser, H., Mayr, S., & Kranzinger, S. (2023).
Classification of Human Motion Data Based on Inertial
Measurement Units in Sports: A Scoping
Review. Applied Sciences, 13, 8684. https://doi.org/10.
3390/app13158684
Kulsoom, F., Narejo, S., Mehmood, Z., Mehmood, Z.,
Chaudhry, H., Butt, A., & Bashir, A. (2022). A review
of machine learning-based human activity recognition
for diverse applications. Neural Computing &
Applications, 34, 18289–18324. https://doi.org/10.
1007/s00521-022-07665-9
Leddy, C., Bolger, R., Byrne, P. J., Kinsella, S., & Zambrano,
L. (2023). Concurrent validity of the human pose
estimation model "MediaPipe Pose" and the XSENS
inertial measuring system for knee flexion and extension
analysis during hurling sport motion. In 2023 IEEE
International Workshop on Sport, Technology and
Research (STAR) (pp. 49-52). Cavalese - Trento, Italy.
https://doi.org/10.1109/STAR58331.2023.10302442
Liu, Z., Kong, J., Qu, M., Zhao, G., & Zhang, C. (2022).
Progress in Data Acquisition of Wearable
Sensors. Biosensors, 12(10), 889. https://doi.org/10.
3390/bios12100889
McDevitt, S., Hernandez, H., Hicks, J., Lowell, R.,
Bentahaikt, H., Burch, R., Ball, J., Chander, H., Freeman,
C., Taylor, C., & Anderson, B. (2022). Wearables for
Biomechanical Performance Optimization and Risk
Assessment in Industrial and Sports