related works, this project offers significant added
value through the integration of a web application and
continuous data updates, ensuring that predictions are
based on the most current information available. The
project addresses the pressing issue of rising crime in
specific districts and crime types, providing valuable
insights for decision-making to enhance public security
systems and reduce criminality. It also promotes
citizen engagement through the web application and
user interfaces.
This research enhances crime prediction by
developing an RF-based model that considers key
factors affecting accuracy. To further improve results,
the study suggests integrating advanced technology
and refining strategies to meet stakeholder needs.
ACKNOWLEDGEMENTS
The authors are grateful to the Dirección de
Investigación de la Universidad Peruana de Ciencias
Aplicadas (UPC) for the support provided for this
research work through the incentive.
REFERENCES
Albahli, S., Alsaqabi, A., Aldhubayi, F., Rauf, H. T., Arif,
M. and Mohammed, M. A. (2020). Predicting the type
of crime: Intelligence gathering and crime analysis.
Computers, Materials & Continua 2021, 66(3), 2317-
2341. https://doi.org/10.32604/cmc.2021.014113
Baek, M. S., Park, W., Park, J., Jang, K. H., and Lee, Y. T.
(2021). Smart Policing Technique with Crime Type and
Risk Score Prediction Based on Machine Learning for
Early Awareness of Risk Situation. IEEE Access,
9(2021), 131906-131915. https://doi.org/10.1109/
ACCESS.2021.3112682
Big Data. (2018). Aprendizaje Automático ML: Métricas de
Regresión. https://sitiobigdata.com/2018/08/27/machi
ne-learning-metricas-regresion-mse/
INEI. (2023). Estadísticas de Seguridad Ciudadana.
https://m.inei.gob.pe/media/MenuRecursivo/boletines/
estadisticas-de-seguridad-ciudadana-noviembre-2022-
abril-2023.pdf
Kovalchuk, O., Karpinski, M., Banakh, S., Kasianchuk, M.,
Shevchuk, R., and Zagorodna, N. (2023). Prediction
Machine Learning Models on Propensity Convicts to
Criminal Recidivism. Information (Switzerland),
(2023), 14(3). https://doi.org/10.3390/info14030161
Landa, N, (2021). Métricas en Regresión. Medium.
Mahmood, N and Ghani, M. (2021). Prediction of Extremist
Behaviour and Suicide Bombing from Terrorism
Contents Using Supervised Learning. Computers,
Materials and Continua (2022), 70(3), 4411-4428.
https://doi.org/10.32604/cmc.2022.013956
Ministerio de Seguridad de la Nación. (2023). SNIC -
Provincial. Estadísticas criminales en la República
Argentina por provincias. https://datos.gob.ar/dataset/
seguridad-snic---provincial-estadisticas-criminales-
republica-argentina-por-provincias
Obagbuwa, I., and Abidoye, A. (2021). South Africa Crime
Visualization, Trends Analysis, and Prediction Using
Machine Learning Linear Regression Technique.
Applied Computational Intelligence and Soft Computing,
(2021). https://doi.org/10.1155/2021/5537902
Rodrigues, A., González, J. A., and Mateu, J. (2023). A
conditional machine learning classification approach
for spatio-temporal risk assessment of crime data.
Stochastic Environmental Research and Risk
Assessment, (2023). https://doi.org/10.1007/s00477-
023-02420-5
Roses, R., Kadar, C., and Malleson, N. (2021). A data-
driven agent-based simulation to predict crime patterns
in an urban environment. Computers, Environment and
Urban Systems, 89(2021). https://doi.org/10.1016/j.
compenvurbsys.2021.101660
Salcedo-Gonzalez, M., Suarez-Paez, J., Esteve, M., and
Palau, C. (2023). Spatiotemporal Predictive Geo-
Visualization of Criminal Activity for Application to
Real-Time Systems for Crime Deterrence, Prevention
and Control. ISPRS International Journal of Geo-
Information, (2023), 12(7). https://www.mdpi.com/
2220-9964/12/7/291
Safat, W., Asghar, S., and Gillani, S. A. (2021). Empirical
Analysis for Crime Prediction and Forecasting Using
Machine Learning and Deep Learning Techniques.
IEEE Access, 9(2021), 70080-70094. https://doi.
org/10.1109/ACCESS.2021.3078117
Saraiva, M., Matijošaitienė, I., Mishra, S., and Amante, A.
(2022). Crime Prediction and Monitoring in Porto,
Portugal, Using Machine Learning, Spatial and Text
Analytics. ISPRS International Journal of Geo-
Information, (2022), 11(7). https://doi.org/10.3390/
ijgi11070400
Semmelbeck, J. and Besaw, C. (2020). Exploring the
Determinants of Crime-Terror Cooperation using
Machine Learning. Journal of Quantitative Criminology,
(2020), 36(3), 527-558. https://doi.org/10.1007/s10940-
019-09421-0
Sharma, H., Choudhury, T., and Kandwal, A. (2021).
Machine learning based analytical approach for
geographical analysis and prediction of Boston City
crime using geospatial dataset. GeoJournal, (2021).
https://doi.org/10.1007/s10708-021-10485-4
Wheeler, A., and Steenbeek, W. (2021). Mapping the Risk
Terrain for Crime Using Machine Learning. Journal of
Quantitative Criminology, (2021), 37(2), 445 - 480.
https://doi.org/10.1007/s10940-020-09457-7
Zhang, J and Lei, Y. (2022). Trend and Identification
Analysis of Anti-investigation Behavior in Crime by
Machine Learning Fusion Algorithm. Wireless
Communications and Mobile Computing, (2022).
https://doi.org/10.1155/2022/1761154