vestigate this by evolving ever harder (yes-)instances
of the NPP using evolutionary algorithms (EAs). The
success of an EA approach to finding such instances,
however, hinges on the fabric of the search space. If
the relative discrepancy of the no-instances in Fig-
ure 4 is also an indicator for the hardness function
of the yes-instances, the latter might have a very high
frequency randomness and thus be particularly chal-
lenging for an EA.
ACKNOWLEDGEMENTS
Computational resources (HPC-cluster HSUper) have
been provided by the project hpc.bw. hpc.bw is
funded by dtec.bw – Digitalization and Technology
Research Center of the Bundeswehr. dtec.bw is
funded by the European Union – NextGenerationEU.
REFERENCES
Brian Hayes (2002). Computing Science: The Easiest Hard
Problem. American Scientist, 90(2):113–117.
Coslovich, L., Pesenti, R., and Ukovich, W. (2006). Large-
scale set partitioning problems: Some real-world in-
stances hide a beneficial structure. Ukio Technologinis
ir Ekonominis Vystymas, 12(1):18–22.
van den Berg, D. and Adriaans, P. (2021). Subset Sum
and the Distribution of Information. In Proceedings
of the 13th International Joint Conference on Compu-
tational Intelligence, pages 134–140.
Finkel, R. and Bentley, J. (1974). Quad trees: A data struc-
ture for retrieval on composite keys. Acta Inf., 4:1–9.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor,
J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
R
´
ıo, J. F., Wiebe, M., Peterson, P., G
´
erard-Marchant,
P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E. (2020). Array pro-
gramming with NumPy. Nature, 585(7825):357–362.
Horn, R., Jansen, R., van Eck, O., and van den Berg, D.
(2024a). Separating the Yes- from the No-Instances in
the Number Partitioning Problem. https://anonymous.
4open.science/r/NPP-24/. (Replication package).
Horn, R., Thomson, S. L., van den Berg, D., and Adriaans,
P. (2024b). The easiest hard problem: Now even eas-
ier. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’24
Companion, page 97–98, New York, NY, USA. As-
sociation for Computing Machinery.
Jason Carpenter (2023). swifter. https://github.com/
jmcarpenter2/swifter/tree/1.4.0.
John D. Hunter (2007). Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering, 9(3):90–
95.
Karp, R. M. (1972). Reducibility among Combinatorial
Problems, pages 85–103. Springer US, Boston, MA.
Matthew Rocklin (2015). Dask: Parallel computation with
blocked algorithms and task scheduling. In Huff,
K. and Bergstra, J., editors, Proceedings of the 14th
Python in Science Conference, pages 130–136.
Michael L. Waskom (2021). seaborn: statistical data visual-
ization. Journal of Open Source Software, 6(60):3021.
Richard Korf (1998). A complete anytime algorithm
for number partitioning. Artificial Intelligence,
106(2):181–203.
Sazhinov, N., Horn, R., Adriaans, P., and van den Berg,
D. (2023). The partition problem, and how the dis-
tribution of input bits affects the solving process. In
Proceedings of the 15th International Conference on
Evolutionary Computation Theory and Applications.
Schreiber, E. L., Korf, R. E., and Moffitt, M. D. (2018). Op-
timal Multi-Way Number Partitioning. J. ACM, 65(4).
Seenu S. Reddi (2008). Graham’s schedules and the number
partition problem.
Sleegers, J., Thomson, S., and van Den Berg, D. (2022).
Universally hard hamiltonian cycle problem instances.
In Proceedings of the 14th International Joint Confer-
ence on Computational Intelligence. SCITEPRESS -
Science and Technology Publications.
Sleegers, J. and Van den Berg, D. (2020). Looking for the
hardest hamiltonian cycle problem instances. In Pro-
ceedings of the 12th International Joint Conference
on Computational Intelligence (IJCCI 2020) - ECTA,
pages 40–48. INSTICC, SciTePress.
Sleegers, J. and Van den Berg, D. (2022). The hardest
hamiltonian cycle problem instances: The plateau of
yes and the cliff of no. SN Comput. Sci., 3(5).
Stephan Mertens (2003). The easiest hard problem: Num-
ber partitioning.
The Pandas development team (2020). pandas-dev/pandas:
Pandas.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605.
Zhang, W. and Korf, R. E. (1996). A study of complex-
ity transitions on the asymmetric traveling salesman
problem. Artificial Intelligence, 81(1):223–239. Fron-
tiers in Problem Solving: Phase Transitions and Com-
plexity.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
188