ACKNOWLEDGEMENTS
Valentino Santucci has been partially supported by the
research projects: “Universit
`
a per Stranieri di Perugia
– Finanziamento Dipartimentale alla Ricerca per Pro-
getti di Ricerca di Ateneo – FDR 2023”, “Universit
`
a
per Stranieri di Perugia – Finanziamento Dipartimen-
tale alla Ricerca per Progetti di Ricerca di Ateneo –
FDR 2024”.
REFERENCES
Baioletti, M., Milani, A., and Santucci, V. (2020). Variable
neighborhood algebraic differential evolution: An ap-
plication to the linear ordering problem with cumula-
tive costs. Information Sciences, 507:37–52.
Ceberio, J., Irurozki, E., Mendiburu, A., and Lozano, J. A.
(2013). A distance-based ranking model estimation
of distribution algorithm for the flowshop scheduling
problem. IEEE Transactions on Evolutionary Compu-
tation, 18(2):286–300.
Ceberio, J. and Santucci, V. (2023). Model-based gradient
search for permutation problems. ACM Transactions
on Evolutionary Learning and Optimization, 3(4):1–
35.
Chopard, B. and Tomassini, M. (2018). An introduction to
metaheuristics for optimization. Springer.
Doerr, B., Ghannane, Y., and Brahim, M. I. (2022). Towards
a stronger theory for permutation-based evolutionary
algorithms. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 1390–1398.
Eberl, M. (2016). Fisher-yates shuffle. Arch. Formal Proofs,
2016:19.
Frazier, P. I. (2018). A tutorial on bayesian optimization.
arXiv preprint arXiv:1807.02811.
Hollander, M., Wolfe, D. A., and Chicken, E. (2013). Non-
parametric statistical methods, volume 751. John Wi-
ley & Sons.
Irurozki, E. and L
´
opez-Ib
´
a
˜
nez, M. (2021). Unbalanced mal-
lows models for optimizing expensive black-box per-
mutation problems. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 225–
233.
Izzo, D. (2015). Revisiting lambert’s problem. Celestial
Mechanics and Dynamical Astronomy, 121:1–15.
Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient global optimization of expensive black-box
functions. Journal of Global optimization, 13(4):455–
492.
Koopmans, T. C. and Beckmann, M. J. (1955). Assign-
ment Problems and the Location of Economic Activi-
ties. Cowles Foundation Discussion Papers 4, Cowles
Foundation for Research in Economics, Yale Univer-
sity.
Kuhn, H. W. (1955). The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97.
Loiola, E. M., De Abreu, N. M. M., Boaventura-Netto,
P. O., Hahn, P., and Querido, T. (2007). A survey for
the quadratic assignment problem. European journal
of operational research, 176(2):657–690.
L
´
opez-Ib
´
a
˜
nez, M., Chicano, F., and Gil-Merino, R. (2022).
The asteroid routing problem: A benchmark for ex-
pensive black-box permutation optimization. In Inter-
national Conference on the Applications of Evolution-
ary Computation (Part of EvoStar), pages 124–140.
Springer.
Nagata, Y. and Kobayashi, S. (2013). A powerful genetic
algorithm using edge assembly crossover for the trav-
eling salesman problem. INFORMS Journal on Com-
puting, 25(2):346–363.
Neumann, F. and Wegener, I. (2007). Randomized lo-
cal search, evolutionary algorithms, and the minimum
spanning tree problem. Theoretical Computer Sci-
ence, 378(1):32–40.
Rosenkrantz, D. J., Stearns, R. E., and Lewis, II, P. M.
(1977). An analysis of several heuristics for the trav-
eling salesman problem. SIAM journal on computing,
6(3):563–581.
Santucci, V. and Baioletti, M. (2022). A fast randomized
local search for low budget optimization in black-box
permutation problems. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE.
Santucci, V., Baioletti, M., and Milani, A. (2016). Alge-
braic differential evolution algorithm for the permuta-
tion flowshop scheduling problem with total flowtime
criterion. IEEE Transactions on Evolutionary Com-
putation, 20(5):682–694.
Santucci, V., Baioletti, M., and Milani, A. (2020). An
algebraic framework for swarm and evolutionary al-
gorithms in combinatorial optimization. Swarm and
Evolutionary Computation, 55:100673.
Santucci, V. and Ceberio, J. (2020). Using pairwise prece-
dences for solving the linear ordering problem. Ap-
plied Soft Computing, 87.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., et al. (2020). Scipy
1.0: fundamental algorithms for scientific computing
in python. Nature methods, 17(3):261–272.
Zaefferer, M., Stork, J., and Bartz-Beielstein, T. (2014a).
Distance measures for permutations in combinatorial
efficient global optimization. In International Confer-
ence on Parallel Problem Solving from Nature, pages
373–383. Springer.
Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks,
B., and Bartz-Beielstein, T. (2014b). Efficient global
optimization for combinatorial problems. In Proceed-
ings of the 2014 annual conference on genetic and
evolutionary computation, pages 871–878.
A Simple yet Effective Algorithm for the Asteroid Routing Problem
59