quality and protect citizens' quality of life. The above
data-driven decision-making can help improve the
efficiency and quality of urban governance, promote
the development of circular economy, help reduce
resource consumption and environmental load,
promote the transformation of cities into a circular
economy model, and achieve sustainable
development goals.
REFERENCES
Bhuvaneshwari, K. S., Uma, J., Venkatachalam, K., Masud,
M., Abouhawwash, M., & Logeswaran, T. 2022.
Gaussian Support Vector Machine Algorithm Based
Air Pollution Prediction. Computers, Materials &
Continua, 71(1).
Bibri, S. E., Alexandre, A., Sharifi, A., & Krogstie, J. 2023.
Environmentally sustainable smart cities and their
converging AI, IoT, and big data technologies and
solutions: an integrated approach to an extensive
literature review. Energy Informatics, 6(1), 9.
Chen, D. M. C., Bodirsky, B. L., Krueger, T., Mishra, A.,
& Popp, A. 2020. The worlds growing municipal solid
waste: trends and impacts. Environmental Research
Letters, 15(7), 074021.
Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., &
Buchanan, R. 2023. Smart Cities—A Structured
Literature Review. Smart Cities, 6(4), 1719-1743.
Huang, C. J., & Kuo, P. H. 2018. A deep CNN-LSTM
model for particulate matter (PM2. 5) forecasting in
smart cities. Sensors, 18(7), 2220.
Lin, K., Zhao, Y., Kuo, J. H., Deng, H., Cui, F., Zhang, Z., ...
& Wang, T. 2022. Toward smarter management and
recovery of municipal solid waste: A critical review on
deep learning approaches. Journal of Cleaner
Production, 346, 130943.
Marques, P., Manfroi, D., Deitos, E., Cegoni, J., Castilhos,
R., Rochol, J., ... & Kunst, R. 2019. An IoT-based smart
cities infrastructure architecture applied to a waste
management scenario. Ad Hoc Networks, 87, 200-208.
Mirza, N. M., Ali, A., & Ishak, M. K. 2024. The scheduling
techniques in the Hadoop and Spark of smart cities
environment: a systematic review. Bulletin of Electrical
Engineering and Informatics, 13(1), 453-464.
Myeong, S., & Shahzad, K. 2021. Integrating data-based
strategies and advanced technologies with efficient air
pollution management in smart
cities. Sustainability, 13(13), 7168.
Olaniyi, O., Okunleye, O. J., & Olabanji, S. O. 2023.
Advancing data-driven decision-making in smart cities
through big data analytics: A comprehensive review of
existing literature. Current Journal of Applied Science
and Technology, 42(25), 10-18.
Shahab, S., Anjum, M., & Umar, M. S. 2022. Deep learning
applications in solid waste management: A deep
literature review. International Journal of Advanced
Computer Science and Applications, 13(3).
Shih, D. H., To, T. H., Nguyen, L. S. P., Wu, T. W., & You,
W. T. 2021. Design of a spark big data framework for
PM2. 5 air pollution forecasting. International journal
of environmental research and public health, 18(13),
7087.
Szpilko, D., de la Torre Gallegos, A., Jimenez Naharro, F.,
Rzepka, A., & Remiszewska, A. 2023. Waste
management in the Smart City: Current practices and
future directions. Resources, 12(10), 115.
Turgel, I., Bozhko, L., Ulyanova, E., & Khabdullin, A.
2019. Implementation of the smart city technology for
environmental protection management of cities: The
experience of Russia and Kazakhstan. Environmental
and Climate Technologies, 23(2), 148-165.
Ullo, S. L., & Sinha, G. R. 2020. Advances in smart
environment monitoring systems using IoT and
sensors. Sensors, 20(11), 3113.