work will focus on developing a nonlinear mathemat-
ical model of the USV to better capture its dynamics
on a wavy water surface. Moreover, the proposed ap-
proach is planned to be integrated into an autonomous
UAV-USV team designed for garbage removal and
water quality monitoring.
ACKNOWLEDGEMENTS
This work was funded by the Czech Science Foun-
dation (GA
ˇ
CR) under research project no. 23-
07517S, by the European Union under the project
Robotics and advanced industrial production (reg. no.
CZ.02.01.01/00/22 008/0004590), and by CTU grant
no SGS23/177/OHK3/3T/13.
REFERENCES
Abujoub, S., McPhee, J., Westin, C., and Irani, R. A.
(2018). Unmanned aerial vehicle landing on maritime
vessels using signal prediction of the ship motion. In
OCEANS 2018 MTS/IEEE Charleston, pages 1–9.
Aissi, M., Moumen, Y., Berrich, J., Bouchentouf, T.,
Bourhaleb, M., and Rahmoun, M. (2020). Au-
tonomous solar usv with an automated launch and re-
covery system for uav: State of the art and design.
In 2020 IEEE 2nd International Conference on Elec-
tronics, Control, Optimization and Computer Science
(ICECOCS), pages 1–6.
Aniceto, A. S., Biuw, M., Lindstrøm, U., Solbø, S. A.,
Broms, F., and Carroll, J. (2018). Monitoring marine
mammals using unmanned aerial vehicles: quantify-
ing detection certainty. Ecosphere, 9(3):e02122.
Baca, T., Petrlik, M., Vrba, M., Spurny, V., Penicka, R.,
Hert, D., and Saska, M. (2021). The MRS UAV
System: Pushing the Frontiers of Reproducible Re-
search, Real-world Deployment, and Education with
Autonomous Unmanned Aerial Vehicles. Journal of
Intelligent & Robotic Systems, 102(26):1–28.
Bingham, B., Aguero, C., McCarrin, M., Klamo, J., Malia,
J., Allen, K., Lum, T., Rawson, M., and Waqar,
R. (2019). Toward maritime robotic simulation in
Gazebo. In Proceedings of MTS/IEEE OCEANS Con-
ference, Seattle, WA.
Fossen, T. I. (2011). Handbook of Marine Craft Hydro-
dynamics and Motion Control. John Wiley & Sons,
United Kingdom, first edition edition.
Gupta, P. M., Pairet, E., Nascimento, T., and Saska, M.
(2023). Landing a uav in harsh winds and turbulent
open waters. IEEE Robotics and Automation Letters,
8(2):744–751.
Han, Y. and Ma, W. (2021). Automatic monitoring of wa-
ter pollution based on the combination of uav and
usv. In 2021 IEEE 4th International Conference on
Electronic Information and Communication Technol-
ogy (ICEICT), pages 420–424.
Hert, D., Baca, T., Petracek, P., Kratky, V., Penicka, R.,
Spurny, V., Petrlik, M., Vrba, M., Zaitlik, D., Stoudek,
P., Walter, V., Stepan, P., Horyna, J., Pritzl, V.,
Sramek, M., Ahmad, A., Silano, G., Bonilla Licea, D.,
Stibinger, P., Nascimento, T., and Saska, M. (2023).
MRS Drone: A Modular Platform for Real-World De-
ployment of Aerial Multi-Robot Systems. Journal of
Intelligent & Robotic Systems.
Hert, D., Baca, T., Petracek, P., Kratky, V., Spurny, V.,
Petrlik, M., Vrba, M., Zaitlik, D., Stoudek, P., Wal-
ter, V., Stepan, P., Horyna, J., Pritzl, V., Silano, G.,
Bonilla Licea, D., Stibinger, P., Penicka, R., Nasci-
mento, T., and Saska, M. (2022). MRS Modular UAV
Hardware Platforms for Supporting Research in Real-
World Outdoor and Indoor Environments. In 2022
International Conference on Unmanned Aircraft Sys-
tems (ICUAS), pages 1264–1273. IEEE.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of Basic Engineer-
ing, 82(1):35–45.
Keller, A. and Ben-Moshe, B. (2022). A robust and accu-
rate landing methodology for drones on moving tar-
gets. Drones, 6(4).
Krogius, M., Haggenmiller, A., and Olson, E. (2019). Flex-
ible layouts for fiducial tags. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS).
Lee, S., Lee, J., Lee, S., Choi, H., Kim, Y., Kim, S., and
Suk, J. (2019). Sliding mode guidance and control for
uav carrier landing. IEEE Transactions on Aerospace
and Electronic Systems, 55(2):951–966.
Marconi, L., Isidori, A., and Serrani, A. (2002). Au-
tonomous vertical landing on an oscillating plat-
form: an internal-model based approach. Automatica,
38(1):21–32.
Meng, Y., Wang, W., Han, H., and Ban, J. (2019). A vi-
sual/inertial integrated landing guidance method for
uav landing on the ship. Aerospace Science and Tech-
nology, 85:474–480.
Murphy, R., Stover, S., Pratt, K., and Griffin, C. (2006). Co-
operative damage inspection with unmanned surface
vehicle and micro unmanned aerial vehicle at Hurri-
cane Wilma. In 2006 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 9–9.
Murphy, R. R., Steimle, E., Griffin, C., Cullins, C., Hall,
M., and Pratt, K. (2008). Cooperative use of un-
manned sea surface and micro aerial vehicles at Hur-
ricane Wilma. Journal of Field Robotics, 25(3):164–
180.
Olson, E. (2011). AprilTag: A robust and flexible visual
fiducial system. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3400–3407.
IEEE.
Polvara, R., Sharma, S., Wan, J., Manning, A., and Sut-
ton, R. (2018). Vision-based autonomous landing of a
quadrotor on the perturbed deck of an unmanned sur-
face vehicle. Drones, 2(2).
Prochazka, O. (2023). Trajectory planning for autonomous
landing of a multirotor helicopter on a boat. Master’s
thesis, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague.
Towards UAV-USV Collaboration in Harsh Maritime Conditions Including Large Waves
553