Micic, N., Neagu, D., Campean, F., and Habib Zadeh, E.
(2017). Towards a Data Quality Framework for Het-
erogeneous Data.
Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G.
(2010). Preferred reporting items for systematic re-
views and meta-analyses: The PRISMA statement.
International Journal of Surgery, 8(5):336–341.
Montero, O., Crespo, Y., and Piatini, M. (2021). Big
Data Quality Models: A Systematic Mapping Study.
In Paiva, A. C. R., Cavalli, A. R., Ventura Mar-
tins, P., and P
´
erez-Castillo, R., editors, Quality of In-
formation and Communications Technology, volume
1439, pages 416–430. Springer International Publish-
ing, Cham.
Naroll, F., Naroll, R., and Howard, F. H. (1961). Position of
women in childbirth. American Journal of Obstetrics
and Gynecology, 82(4):943–954.
NIST, C. C. (2020). Data asset - Glossary | CSRC.
https://csrc.nist.gov/glossary/term/data asset.
Otto, B., Ten Hompel, M., and Wrobel, S., editors (2022).
Designing Data Spaces: The Ecosystem Approach to
Competitive Advantage. Springer International Pub-
lishing, Cham.
Pan, J. Z., Vetere, G., Gomez-Perez, J. M., and Wu, H.,
editors (2017). Exploiting Linked Data and Knowl-
edge Graphs in Large Organisations. Springer Inter-
national Publishing, Cham.
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
(2024). Unifying Large Language Models and Knowl-
edge Graphs: A Roadmap. IEEE Transactions on
Knowledge and Data Engineering, pages 1–20.
Peregrina, J. A., Ortiz, G., and Zirpins, C. (2022). To-
wards a Metadata Management System for Prove-
nance, Reproducibility and Accountability in Feder-
ated Machine Learning. In Zirpins, C., Ortiz, G.,
Nochta, Z., Waldhorst, O., Soldani, J., Villari, M., and
Tamburri, D., editors, Advances in Service-Oriented
and Cloud Computing, pages 5–18, Cham. Springer
Nature Switzerland.
Pernici, B. and Scannapieco, M. (2003). Data Quality in
Web Information Systems. In Goos, G., Hartmanis,
J., Van Leeuwen, J., Spaccapietra, S., March, S., and
Aberer, K., editors, Journal on Data Semantics I, vol-
ume 2800, pages 48–68. Springer Berlin Heidelberg,
Berlin, Heidelberg.
Price, R. and Shanks, G. (2010). DQ tags and decision-
making. In 2010 43rd Hawaii International Confer-
ence on System Sciences, pages 1–10.
Radulovic, F., Mihindukulasooriya, N., Garc
´
ıa-Castro, R.,
and G
´
omez-P
´
erez, A. (2017). A comprehensive qual-
ity model for Linked Data. Semantic Web, 9(1):3–24.
Ramasamy, A. and Chowdhury, S. (2020). Big Data Quality
Dimensions: A Systematic Literature Review. Journal
of Information Systems and Technology Management,
page e202017003.
Schaal, M., Smyth, B., Mueller, R. M., and MacLean, R.
(2012). Information quality dimensions for the so-
cial web. In Proceedings of the International Con-
ference on Management of Emergent Digital EcoSys-
tems, Medes ’12, pages 53–58, New York, NY, USA.
Association for Computing Machinery.
Stvilia, B., Gasser, L., Twidale, M. B., and Smith, L. C.
(2007). A framework for information quality assess-
ment. Journal of the American Society for Information
Science and Technology, 58(12):1720–1733.
Tarver, H. and Phillips, M. E. (2021). EPIC: A proposed
model for approaching metadata improvement. In
Garoufallou, E. and Ovalle-Perandones, M.-A., edi-
tors, Metadata and Semantic Research, pages 228–
233, Cham. Springer International Publishing.
Theissen-Lipp, J., Kocher, M., Lange, C., Decker, S.,
Paulus, A., Pomp, A., and Curry, E. (2023). Seman-
tics in Dataspaces: Origin and Future Directions. In
Companion Proceedings of the ACM Web Conference
2023, pages 1504–1507, Austin TX USA. ACM.
Unterkalmsteiner, M. and Abdeen, W. (2024). A com-
pendium and evaluation of taxonomy quality at-
tributes.
Wang, J. (2012). A Quality Framework for Data Integra-
tion. In MacKinnon, L. M., editor, Data Security and
Security Data, volume 6121, pages 131–134. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Wang, X., Chen, L., Ban, T., Usman, M., Guan, Y., Liu,
S., Wu, T., and Chen, H. (2021). Knowledge graph
quality control: A survey. Fundamental Research,
1(5):607–626.
Wickett, K. M. and Newman, J. (2024). Towards a Crit-
ical Data Quality Analysis of Open Arrest Record
Datasets. In Sserwanga, I., Joho, H., Ma, J., Hansen,
P., Wu, D., Koizumi, M., and Gilliland, A. J., editors,
Wisdom, Well-Being, Win-Win, pages 311–318, Cham.
Springer Nature Switzerland.
Xu, Z., Gao, Y., and Yu, F. (2021). Quality Evaluation
Model of AI-based Knowledge Graph System. In
2021 3rd International Conference on Natural Lan-
guage Processing (ICNLP), pages 73–78, Beijing,
China. IEEE.
Xue, B. and Zou, L. (2022). Knowledge Graph Quality
Management: A Comprehensive Survey. IEEE Trans-
actions on Knowledge and Data Engineering, pages
1–1.
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann,
J., and Auer, S. (2015). Quality assessment for Linked
Data: A Survey: A systematic literature review and
conceptual framework. Semantic Web, 7(1):63–93.
Zhang, L., Jeong, D., and Lee, S. (2021). Data Qual-
ity Management in the Internet of Things. Sensors,
21(17):5834.
Zhu, H., Liu, D., Bayley, I., Aldea, A., Yang, Y., and Chen,
Y. (2017). Quality model and metrics of ontology for
semantic descriptions of web services. Tsinghua Sci-
ence and Technology, 22(3):254–272.
WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies
208