ACKNOWLEDGEMENTS
This research was supported in part by the AI4OPT
institute NSF award 2112533.
REFERENCES
Angel, A., Koudas, N., Sarkas, N., Srivastava, D., Svend-
sen, M., and Tirthapura, S. (2014). Dense subgraph
maintenance under streaming edge weight updates for
real-time story identification. The VLDB journal,
23:175–199.
Boob, D., Gao, Y., Peng, R., Sawlani, S., Tsourakakis, C.,
Wang, D., and Wang, J. (2020). Flowless: Extract-
ing densest subgraphs without flow computations. In
Proceedings of The Web Conference 2020, pages 573–
583.
Charikar, M. (2000). Greedy approximation algorithms for
finding dense components in a graph. In International
workshop on approximation algorithms for combina-
torial optimization, pages 84–95. Springer.
Fortunato, S. (2010). Community detection in graphs.
Physics reports, 486(3-5):75–174.
Fratkin, E., Naughton, B. T., Brutlag, D. L., and Bat-
zoglou, S. (2006). Motifcut: regulatory motifs find-
ing with maximum density subgraphs. Bioinformat-
ics, 22(14):e150–e157.
Gallo, G., Grigoriadis, M. D., and Tarjan, R. E. (1989). A
fast parametric maximum flow algorithm and applica-
tions. SIAM Journal on Computing, 18(1):30–55.
Goldberg, A. V. (1984). Finding a maximum density sub-
graph. UC Berkeley manuscript.
Goldberg, A. V. and Tarjan, R. E. (1988). A new approach
to the maximum-flow problem. Journal of the ACM
(JACM), 35(4):921–940.
Harb, E., Quanrud, K., and Chekuri, C. (2022). Faster and
scalable algorithms for densest subgraph and decom-
position. Advances in Neural Information Processing
Systems, 35:26966–26979.
Hochbaum, D. S. (1998). The pseudoflow algorithm and
the pseudoflow-based simplex for the maximum flow
problem. In Integer Programming and Combinato-
rial Optimization: 6th International IPCO Confer-
ence Houston, Texas, June 22–24, 1998 Proceedings
6, pages 325–337. Springer.
Hochbaum, D. S. (2002). Solving integer programs
over monotone inequalities in three variables: A
framework for half integrality and good approxima-
tions. European Journal of Operational Research,
140(2):291–321.
Hochbaum, D. S. (2008). The pseudoflow algorithm: A new
algorithm for the maximum-flow problem. Operations
research, 56(4):992–1009.
Hochbaum, D. S. (2009). Dynamic evolution of economi-
cally preferred facilities. European Journal of Opera-
tional Research, 193(3):649–659.
Hochbaum, D. S. (2010). Polynomial time algorithms for
ratio regions and a variant of normalized cut. IEEE
transactions on pattern analysis and machine intelli-
gence, 32(5):889–898.
Hochbaum, D. S. (2020a). Hpf - hochbaum’s
pseudoflow. Accessed: May 28, 2022,
https://riot.ieor.berkeley.edu/Applications/full-
para-HPF/pseudoflow-parametric-cut.html.
Hochbaum, D. S. (2020b). Pseudoflow (simple) parametric
maximum flow solver version 1.0. Accessed: May 28,
2022, https://riot.ieor.berkeley.edu/Applications/
Pseudoflow/parametric.html.
Hochbaum, D. S. (2023). Unified new techniques for np-
hard budgeted problems with applications in team col-
laboration, pattern recognition, document summariza-
tion, community detection and imaging. Proceedings
of the 15th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowl-
edge Management, 1:365–372.
Hochbaum, D. S., Irribarra-Cort
´
es, A., and As
´
ın-Ach
´
a, R.
(2024). Fast and optimal incremental parametric pro-
cedure for the densest subgraph problem: An experi-
mental study. UC Berkeley manuscript.
Karypis, G. and Kumar, V. (1998). A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–
392.
Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins,
A. (1999). Trawling the web for emerging cyber-
communities. Computer networks, 31(11-16):1481–
1493.
Lang, K. and Rao, S. (2004). A flow-based method for
improving the expansion or conductance of graph
cuts. In Integer Programming and Combinatorial
Optimization: 10th International IPCO Conference,
New York, NY, USA, June 7-11, 2004. Proceedings 10,
pages 325–337. Springer.
Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data.
Picard, J.-C. and Queyranne, M. (1982). A network flow
solution to some nonlinear 0-1 programming prob-
lems, with applications to graph theory. Networks,
12(2):141–159.
Sharon, E., Galun, M., Sharon, D., Basri, R., and Brandt, A.
(2006). Hierarchy and adaptivity in segmenting visual
scenes. Nature, 442(7104):810–813.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8):888–905.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
282