Production Research, 60(14), 4464-4486.
https://doi.org/10.1080/00207543.2021.1966540
Ansari, W. A., Diya, P., Patil, S., & Patil, S. (2019). A
review on robotic process automation-the future of
business organizations. In 2nd International conference
on advances in science & technology (ICAST).
http://dx.doi.org/10.2139/ssrn.3372171
Azeroual, O., Nikiforova, A., & Sha, K. (2023).
Overlooked Aspects of Data Governance: Workflow
Framework For Enterprise Data Deduplication. In 2023
International Conference on Intelligent Computing,
Communication, Networking and Services (ICCNS)
(pp. 65-73). IEEE. https://doi.org/10.1109/ICCNS5879
5.2023.10193478
Biggeri, M., Borsacchi, L., Braito, L., & Ferrannini, A.
(2023). Measuring the compliance of management
system in manufacturing SMEs: an integrated model.
Journal of Cleaner Production, 382, 135297.
https://doi.org/10.1016/j.jclepro.2022.135297
Brous, P., Janssen, M., & Krans, R. (2020). Data
governance as success factor for data science. In
Conference on e-Business, e-Services and e-Society
(pp. 431-442). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-030-44999-
5_36
Caparini, M., & Gogolewska, A. (2021). Governance
challenges of transformative technologies.
Connections: The Quarterly Journal, 20(1), 91-100.
https://doi.org/10.11610/Connections.20.1.06
Duggineni, S. (2023). Impact of controls on data integrity
and information systems. Science and Technology,
13(2), 29-35. https://doi.org/10.5923/j.scit.202313
02.04
Farayola, O. A., Olorunfemi, O. L., & Shoetan, P. O.
(2024). Data privacy and security in it: a review of
techniques and challenges. Computer Science & IT
Research Journal, 5(3), 606-615. https://doi.org/
10.51594/csitrj.v5i3.909
Georgiadis, G., & Poels, G. (2021). Enterprise architecture
management as a solution for addressing general data
protection regulation requirements in a big data context:
a systematic mapping study. Information Systems and
e-Business Management, 19, 313-362. https://doi.org/
10.1007/s10257-020-00500-5
Gong, Y., Yang, J., & Shi, X. (2020). Towards a
comprehensive understanding of digital transformation
in government: Analysis of flexibility and enterprise
architecture. Government Information Quarterly,
37(3), 101487. https://doi.org/10.1016/j.giq.2020.1014
87
Hatanaka, M., Konefal, J., Strube, J., Glenna, L., & Conner,
D. (2022). Datadriven sustainability: Metrics, digital
technologies, and governance in food and agriculture.
Rural Sociology, 87(1), 206-230. https://doi.org/
10.1111/ruso.12415
Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022).
Quo vadis artificial intelligence?. Discover Artificial
Intelligence, 2(1), 4. https://doi.org/10.1007/s44163-
022-00022-8
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., &
Janowski, T. (2020). Data governance: Organizing data
for trustworthy Artificial Intelligence. Government
information quarterly, 37(3), 101493.
https://doi.org/10.1016/j.giq.2020.101493
Khan, A. (2024). Data Quality and Governance in
Healthcare: Leveraging AI and ML for Master Data
Management. International Meridian Journal, 6(6), 1-
8.https://meridianjournal.in/index.php/IMJ/article/vie
w/33
Kolasani, S. (2023). Innovations in digital, enterprise,
cloud, data transformation, and organizational change
management using agile, lean, and data-driven
methodologies. International Journal of Machine
Learning and Artificial Intelligence, 4(4), 1-18.
https://jmlai.in/index.php/ijmlai/article/view/35
Lee, I., & Shin, Y. J. (2020). Machine learning for
enterprises: Applications, algorithm selection, and
challenges. Business Horizons, 63(2), 157-170.
https://doi.org/10.1016/j.bushor.2019.10.005
Li, Y., Yi, J., Chen, H., & Peng, D. (2021). Theory and
application of artificial intelligence in financial
industry. Data Science in Finance and Economics, 1(2),
96-116. https://doi.org/10.3934/DSFE.2021006
Mahanti, R. (2021). Data governance and data
management. Springer Singapore.
https://doi.org/10.1007/978-981-16-3583-0
Mishra, A. K., Tyagi, A. K., & Arowolo, M. O. (2024).
Future Trends and Opportunities in Machine Learning
and Artificial Intelligence for Banking and Finance. In
Applications of Block Chain technology and Artificial
Intelligence: Lead-ins in Banking, Finance, and
Capital Market (pp. 211-238). Cham: Springer
International Publishing. https://doi.org/10.1007/978-
3-031-47324-1_13
Olawale, O., Ajayi, F. A., Udeh, C. A., & Odejide, O. A.
(2024). RegTech innovations streamlining compliance,
reducing costs in the financial sector. GSC Advanced
Research and Reviews, 19(1), 114-131.
https://doi.org/10.30574/gscarr.2024.19.1.0146
Plotkin, D. (2020). Data stewardship: An actionable guide
to effective data management and data governance.
Academic press. https://doi.org/10.1016/C2012-0-
07057-3
Radke, A. M., Dang, M. T., & Tan, A. (2020). Using robotic
process automation (RPA) to enhance item master data
maintenance process. LogForum, 16(1).
http://doi.org/10.17270/J.LOG.2020.380
Rane, N., Choudhary, S., & Rane, J. (2024). Artificial
Intelligence-Driven Corporate Finance: Enhancing
Efficiency and Decision-Making Through Machine
Learning, Natural Language Processing, and Robotic
Process Automation in Corporate Governance and
Sustainability. Natural Language Processing, and
Robotic Process Automation in Corporate Governance
and Sustainability. http://dx.doi.org/10.2139/ssrn.472
0591
Rangineni, S., Bhanushali, A., Suryadevara, M., Venkata,
S., & Peddireddy, K. (2023). A Review on enhancing
data quality for optimal data analytics performance.