Production Research, 60(14), 4464-4486. 
https://doi.org/10.1080/00207543.2021.1966540 
Ansari, W. A., Diya, P., Patil, S., & Patil, S. (2019). A 
review on robotic process automation-the future of 
business organizations. In 2nd International conference 
on advances in science & technology (ICAST). 
http://dx.doi.org/10.2139/ssrn.3372171 
Azeroual, O., Nikiforova, A., & Sha, K. (2023). 
Overlooked Aspects of Data Governance: Workflow 
Framework For Enterprise Data Deduplication. In 2023 
International Conference on Intelligent Computing, 
Communication, Networking and Services (ICCNS) 
(pp. 65-73). IEEE. https://doi.org/10.1109/ICCNS5879 
5.2023.10193478 
Biggeri, M., Borsacchi, L., Braito, L., & Ferrannini, A. 
(2023). Measuring the compliance of management 
system in manufacturing SMEs: an integrated model. 
Journal of Cleaner Production, 382, 135297. 
https://doi.org/10.1016/j.jclepro.2022.135297 
Brous, P., Janssen, M., & Krans, R. (2020). Data 
governance as success factor for data science. In 
Conference on e-Business, e-Services and e-Society 
(pp. 431-442). Cham: Springer International 
Publishing. https://doi.org/10.1007/978-3-030-44999-
5_36 
Caparini, M., & Gogolewska, A. (2021). Governance 
challenges of transformative technologies. 
Connections: The Quarterly Journal, 20(1), 91-100. 
https://doi.org/10.11610/Connections.20.1.06 
Duggineni, S. (2023). Impact of controls on data integrity 
and information systems. Science and Technology, 
13(2), 29-35. https://doi.org/10.5923/j.scit.202313 
02.04 
Farayola, O. A., Olorunfemi, O. L., & Shoetan, P. O. 
(2024). Data privacy and security in it: a review of 
techniques and challenges. Computer Science & IT 
Research Journal, 5(3), 606-615.  https://doi.org/ 
10.51594/csitrj.v5i3.909  
Georgiadis, G., & Poels, G. (2021). Enterprise architecture 
management as a solution for addressing general data 
protection regulation requirements in a big data context: 
a systematic mapping study. Information Systems and 
e-Business Management, 19, 313-362. https://doi.org/ 
10.1007/s10257-020-00500-5 
Gong, Y., Yang, J., & Shi, X. (2020). Towards a 
comprehensive understanding of digital transformation 
in government: Analysis of flexibility and enterprise 
architecture.  Government Information Quarterly, 
37(3), 101487. https://doi.org/10.1016/j.giq.2020.1014 
87 
Hatanaka, M., Konefal, J., Strube, J., Glenna, L., & Conner, 
D. (2022). Datadriven sustainability: Metrics, digital 
technologies, and governance in food and agriculture. 
Rural Sociology, 87(1), 206-230.  https://doi.org/ 
10.1111/ruso.12415 
Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). 
Quo vadis artificial intelligence?. Discover Artificial 
Intelligence, 2(1), 4. https://doi.org/10.1007/s44163-
022-00022-8 
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & 
Janowski, T. (2020). Data governance: Organizing data 
for trustworthy Artificial Intelligence. Government 
information quarterly, 37(3), 101493. 
https://doi.org/10.1016/j.giq.2020.101493 
Khan, A. (2024). Data Quality and Governance in 
Healthcare: Leveraging AI and ML for Master Data 
Management. International Meridian Journal, 6(6), 1-
8.https://meridianjournal.in/index.php/IMJ/article/vie
w/33 
Kolasani, S. (2023). Innovations in digital, enterprise, 
cloud, data transformation, and organizational change 
management using agile, lean, and data-driven 
methodologies.  International Journal of Machine 
Learning and Artificial Intelligence, 4(4), 1-18. 
https://jmlai.in/index.php/ijmlai/article/view/35 
Lee, I., & Shin, Y. J. (2020). Machine learning for 
enterprises: Applications, algorithm selection, and 
challenges.  Business Horizons, 63(2), 157-170. 
https://doi.org/10.1016/j.bushor.2019.10.005 
Li, Y., Yi, J., Chen, H., & Peng, D. (2021). Theory and 
application of artificial intelligence in financial 
industry. Data Science in Finance and Economics, 1(2), 
96-116. https://doi.org/10.3934/DSFE.2021006 
Mahanti, R. (2021). Data governance and data 
management. Springer Singapore. 
https://doi.org/10.1007/978-981-16-3583-0 
Mishra, A. K., Tyagi, A. K., & Arowolo, M. O. (2024). 
Future Trends and Opportunities in Machine Learning 
and Artificial Intelligence for Banking and Finance. In 
Applications of Block Chain technology and Artificial 
Intelligence: Lead-ins in Banking, Finance, and 
Capital Market (pp. 211-238). Cham: Springer 
International Publishing. https://doi.org/10.1007/978-
3-031-47324-1_13 
Olawale, O., Ajayi, F. A., Udeh, C. A., & Odejide, O. A. 
(2024). RegTech innovations streamlining compliance, 
reducing costs in the financial sector. GSC Advanced 
Research and Reviews, 19(1), 114-131. 
https://doi.org/10.30574/gscarr.2024.19.1.0146 
Plotkin, D. (2020). Data stewardship: An actionable guide 
to effective data management and data governance. 
Academic press. https://doi.org/10.1016/C2012-0-
07057-3 
Radke, A. M., Dang, M. T., & Tan, A. (2020). Using robotic 
process automation (RPA) to enhance item master data 
maintenance process. LogForum, 16(1). 
http://doi.org/10.17270/J.LOG.2020.380 
Rane, N., Choudhary, S., & Rane, J. (2024). Artificial 
Intelligence-Driven Corporate Finance: Enhancing 
Efficiency and Decision-Making Through Machine 
Learning, Natural Language Processing, and Robotic 
Process Automation in Corporate Governance and 
Sustainability. Natural Language Processing, and 
Robotic Process Automation in Corporate Governance 
and Sustainability. http://dx.doi.org/10.2139/ssrn.472 
0591 
Rangineni, S., Bhanushali, A., Suryadevara, M., Venkata, 
S., & Peddireddy, K. (2023). A Review on enhancing 
data quality for optimal data analytics performance.