REFERENCES
Aebersold, S., Kryszczuk, K., Paganoni, S., Tellenbach,
B., and Trowbridge, T. (2016). Detecting obfus-
cated javascripts using machine learning. In ICIMP
2016 the Eleventh International Conference on Inter-
net Monitoring and Protection, Valencia, Spain, 22-26
May 2016, volume 1, pages 11–17. Curran Associates.
Ariu, D. and Giacinto, G. (2011). A modular architecture
for the analysis of http payloads based on multiple
classifiers. In Multiple Classifier Systems: 10th Inter-
national Workshop, MCS 2011, Naples, Italy, June 15-
17, 2011. Proceedings 10, pages 330–339. Springer.
Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. (2017). Practical secure aggregation for
privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1175–1191.
Gal
´
an, E., Alcaide, A., Orfila, A., and Blasco, J. (2010).
A multi-agent scanner to detect stored-xss vulnera-
bilities. In 2010 International Conference for Inter-
net Technology and Secured Transactions, pages 1–6.
IEEE.
Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P.
(2020). The non-iid data quagmire of decentralized
machine learning. In International Conference on Ma-
chine Learning, pages 4387–4398. PMLR.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., et al. (2021). Advances and
open problems in federated learning. Foundations and
trends® in machine learning, 14(1–2):1–210.
Klein, A. (2005). Dom based cross site scripting or xss of
the third kind. Web Application Security Consortium,
Articles, 4:365–372.
Komiya, R., Paik, I., and Hisada, M. (2011). Classification
of malicious web code by machine learning. In 2011
3rd International Conference on Awareness Science
and Technology (iCAST), pages 406–411. IEEE.
Kone
ˇ
cn
`
y, J., McMahan, H. B., Yu, F. X., Richt
´
arik, P.,
Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication ef-
ficiency. arXiv preprint arXiv:1610.05492.
Kotzur, M. (2022). Privacy protection in the world wide
web—legal perspectives on accomplishing a mission
impossible. In Personality and Data Protection Rights
on the Internet: Brazilian and German Approaches,
pages 17–34. Springer.
Lee, S., Wi, S., and Son, S. (2022). Link: Black-box detec-
tion of cross-site scripting vulnerabilities using rein-
forcement learning. In Proceedings of the ACM Web
Conference 2022, pages 743–754.
Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020a). A review
of applications in federated learning. Computers &
Industrial Engineering, 149:106854.
Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. (2020b). Federated optimization in het-
erogeneous networks. Proceedings of Machine Learn-
ing and Systems, 2:429–450.
Likarish, P., Jung, E., and Jo, I. (2009). Obfuscated ma-
licious javascript detection using classification tech-
niques. In 2009 4th International Conference on Ma-
licious and Unwanted Software (MALWARE), pages
47–54. IEEE.
Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J. (2017).
Deep gradient compression: Reducing the commu-
nication bandwidth for distributed training. arXiv
preprint arXiv:1712.01887.
Luo, C., Su, S., Sun, Y., Tan, Q., Han, M., and Tian, Z.
(2020). A convolution-based system for malicious urls
detection. Computers, Materials & Continua, 62(1).
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In Ar-
tificial intelligence and statistics, pages 1273–1282.
PMLR.
Mereani, F. A. and Howe, J. M. (2018). Detecting cross-site
scripting attacks using machine learning. In Interna-
tional conference on advanced machine learning tech-
nologies and applications, pages 200–210. Springer.
Meyer, R. and Cid, C. (2008). Detecting attacks on web
applications from log files. Sans Institute.
Ndegwa, A. (2016). What is a web application. Maxcdn
[En l
´
ınea], 31.
Nunan, A. E., Souto, E., Dos Santos, E. M., and Feitosa, E.
(2012). Automatic classification of cross-site script-
ing in web pages using document-based and url-based
features. In 2012 IEEE symposium on computers
and communications (ISCC), pages 000702–000707.
IEEE.
OWASP (2017). Owasp top 10 - 2023 rc1. https://owas
p.org, note = Accessed on [26-9-2023],.
Rocha, T. S. and Souto, E. (2014). Etssdetector: A tool
to automatically detect cross-site scripting vulnerabil-
ities. In 2014 IEEE 13th International Symposium
on Network Computing and Applications, pages 306–
309. IEEE.
Shamir, O., Srebro, N., and Zhang, T. (2014).
Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In
International conference on machine learning, pages
1000–1008. PMLR.
Sharafaldin, I., Lashkari, A. H., Ghorbani, A. A., et al.
(2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. ICISSp,
1:108–116.
Wei-Hong, W., Yin-Jun, L., Hui-Bing, C., and Zhao-Lin, F.
(2013). A static malicious javascript detection using
svm. In Conference of the 2nd International Confer-
ence on Computer Science and Electronics Engineer-
ing (ICCSEE 2013), pages 214–217. Atlantis Press.
Wu, D., He, Y., Luo, X., and Zhou, M. (2021a). A latent fac-
tor analysis-based approach to online sparse stream-
ing feature selection. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 52(11):6744–6758.
Wu, D., Luo, X., Shang, M., He, Y., Wang, G., and Zhou,
M. (2019). A deep latent factor model for high-
dimensional and sparse matrices in recommender sys-
tems. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 51(7):4285–4296.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
292