Cha, S.-H. and Srihari, S. N. (2002). On measuring the
distance between histograms. Pattern Recognition,
35(6):1355–1370.
Chi, H., Mascagni, M., and Warnock, T. (2005). On the op-
timal Halton sequence. Mathematics and Computers
in Simulation, 70(1):9–21.
Das, S. and Suganthan, P. N. (2010). Differential evolution:
A survey of the state-of-the-art. IEEE Transactions on
Evolutionary Computation, 15(1):4–31.
Eslami, M., Shareef, H., Khajehzadeh, M., and Mohamed,
A. (2012). A survey of the state of the art in particle
swarm optimization. Research Journal of Applied Sci-
ences, Engineering and Technology, 4(9):1181–1197.
Halton, J. H. (1964). Algorithm 247: Radical-inverse quasi-
random point sequence. Communications of the ACM,
7(12):701–702.
Hansen, N., Auger, A., Ros, R., Mersmann, O., Tu
ˇ
sar, T.,
and Brockhoff, D. (2021). COCO: A platform for
comparing continuous optimizers in a black-box set-
ting. Optimization Methods and Software, 36(1):114–
144.
Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review
on genetic algorithm: Past, present, and future. Multi-
media Tools and Applications, 80(5):8091–8126.
Kerschke, P. and Trautmann, H. (2019). Automated al-
gorithm selection on continuous black-box problems
by combining exploratory landscape analysis and ma-
chine learning. Evolutionary Computation, 27(1):99–
127.
Kr
¨
omer, P., Uher, V., Andova, A., Tusar, T., and Filipic,
B. (2022). Sampling strategies for exploratory land-
scape analysis of bi-objective problems. In 2022 Inter-
national Conference on Computational Science and
Computational Intelligence (CSCI), pages 336–342,
Los Alamitos, CA, USA. IEEE Computer Society.
Kr
¨
omer, P., Uher, V., Tu
ˇ
sar, T., and Filipi
ˇ
c, B. (2024). On
the latent structure of the bbob-biobj test suite. In Ap-
plications of Evolutionary Computation, pages 326–
341, Cham. Springer Nature Switzerland.
Kullback, S. and Leibler, R. A. (1951). On Information and
Sufficiency. The Annals of Mathematical Statistics,
22(1):79 – 86.
Lang, R. D. and Engelbrecht, A. P. (2021). An exploratory
landscape analysis-based benchmark suite. Algo-
rithms, 14(3).
Liefooghe, A., Verel, S., Chugh, T., Fieldsend, J., All-
mendinger, R., and Miettinen, K. (2023). Feature-
based benchmarking of distance-based multi/many-
objective optimisation problems: A machine learn-
ing perspective. In Evolutionary Multi-Criterion Op-
timization, pages 260–273, Cham. Springer Nature
Switzerland.
Malan, K. M. (2021). A Survey of Advances in Landscape
Analysis for Optimisation. Algorithms, 14(2):40.
McKay, M. D., Beckman, R. J., and Conover, W. J. (2000).
A comparison of three methods for selecting values of
input variables in the analysis of output from a com-
puter code. Technometrics, 42(1):55–61.
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M.,
Weihs, C., and Rudolph, G. (2011). Exploratory land-
scape analysis. In Proceedings of the 13th Annual
Genetic and Evolutionary Computation Conference
(GECCO), pages 829–836. ACM.
Mu
˜
noz, M. A., Kirley, M., and Halgamuge, S. K. (2015).
Exploratory landscape analysis of continuous space
optimization problems using information content.
IEEE Transactions on Evolutionary Computation,
19(1):74–87.
Nowakova, J. and Pokorny, M. (2014). System identifica-
tion using genetic algorithms. In Proceedings of the
Fifth International Conference on Innovations in Bio-
inspired Computing and Applications (IBICA 2014),
volume 303 of Advances in Intelligent Systems and
Computing, pages 413–418.
Pikalov, M. and Mironovich, V. (2021). Automated pa-
rameter choice with exploratory landscape analysis
and machine learning. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO)
Companion, pages 1982–1985. ACM.
Renau, Q., Doerr, C., Dreo, J., and Doerr, B. (2020). Ex-
ploratory landscape analysis is strongly sensitives to
the sampling strategy. In Parallel Problem Solving
from Nature – PPSN XVI, volume 12270, pages 139–
153. Springer.
Renau, Q., Dreo, J., Doerr, C., and Doerr, B. (2021).
Towards explainable exploratory landscape analysis:
Extreme feature selection for classifying BBOB func-
tions. In Applications of Evolutionary Computation,
pages 17–33. Springer.
Richter, H. and Engelbrecht, A. (2014). Recent advances
in the theory and application of fitness landscapes.
Springer.
Shirakawa, S. and Nagao, T. (2016). Bag of local landscape
features for fitness landscape analysis. Soft Comput-
ing, 20(10):3787–3802.
Sobol, I. M. (1967). On the distribution of points in a cube
and the approximate evaluation of integrals. Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki,
7(4):784–802.
Swain, M. J. and Ballard, D. H. (1991). Color indexing.
International journal of computer vision, 7(1):11–32.
Tanabe, R. (2022). Benchmarking feature-based algorithm
selection systems for black-box numerical optimiza-
tion. IEEE Transactions on Evolutionary Computa-
tion, pages 1321–1335.
Trajanov, R., Dimeski, S., Popovski, M., Koro
ˇ
sec, P., and
Eftimov, T. (2022). Explainable landscape analysis in
automated algorithm performance prediction. In Ap-
plications of Evolutionary Computation, pages 207–
222. Springer.
Uher, V. and Kr
¨
omer, P. (2023). Impact of different dis-
crete sampling strategies on fitness landscape analy-
sis based on histograms. In Proceedings of the 13th
International Conference on Advances in Information
Technology, pages 1–9.
Zou, F., Chen, D., Liu, H., Cao, S., Ji, X., and Zhang, Y.
(2022). A survey of fitness landscape analysis for op-
timization. Neurocomputing, 503:129–139.
Fitness Histograms of Expert-Defined Problem Classes in Fitness Landscape Classification
213