Lian, D., Ge, Y., Zhang, F., Yuan, N. J., Xie, X., Zhou,
T., and Rui, Y. (2015). Content-aware collaborative
filtering for location recommendation based on human
mobility data. In 2015 IEEE international conference
on data mining, pages 261–270. IEEE.
Liu, B., Fu, Y., Yao, Z., and Xiong, H. (2013).
Learning geographical preferences for point-of-
interest recommendation. In Proceedings of the
19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1043–
1051. ACM.
Liu, Y., Zhao, P., Sheng, V. S., Li, Z., Liu, A.,
Wu, J., and Cui, Z. (2015). Rpcv: Recommend
potential customers to vendors in location-based
social network. In International Conference on
Web-Age Information Management, pages 272–284.
Springer.
Liu, Z., Meng, L., Sheng, Q. Z., Chu, D., Yu, J.,
and Song, X. (2024). Poi recommendation for
random groups based on cooperative graph neural
networks. Information Processing & Management,
61(3):103676.
Manning, C. D., Sch
¨
utze, H., and Raghavan, P. (2008).
Introduction to information retrieval. Cambridge
university press.
Masthoff, J. (2015). Group recommender systems:
aggregation, satisfaction and group attributes. In
Recommender Systems Handbook, pages 743–776.
Springer.
Ngamsa-Ard, S., Razavi, M., Prasad, P., and Elchouemi,
A. (2020). Point-of-interest (poi) recommender
systems for social groups in location based social
networks (lbsns): Proposition of an improved model.
IAENG International Journal of Computer Science,
47(3):331–342.
Nguyen, T., Phan, T. C., Nguyen, T. T., Nguyen,
Q. H., and Stantic, B. (2018). Diversifying group
recommendation. page 10.
Nguyen, T. N. and Ricci, F. (2017). Dynamic elicitation of
user preferences in a chat-based group recommender
system. In Proceedings of the Symposium on Applied
Computing, pages 1685–1692. ACM.
Oliveira, A. and Durao, F. (2021). A group recommendation
model using diversification techniques. In
Proceedings of the 54th Hawaii International
Conference on System Sciences, page 2669, Hawaii,
HI, USA.
O’connor, M., Cosley, D., Konstan, J. A., and Riedl, J.
(2001). Polylens: a recommender system for groups
of users. In ECSCW 2001, pages 199–218. Springer.
Parra, D. and Sahebi, S. (2013). Recommender systems:
Sources of knowledge and evaluation metrics. In
Advanced techniques in web intelligence-2, pages
149–175. Springer.
Quijano-Sanchez, L., Recio-Garcia, J. A., Diaz-Agudo,
B., and Jimenez-Diaz, G. (2013). Social factors in
group recommender systems. ACM Transactions on
Intelligent Systems and Technology (TIST), 4(1):8.
Ravi, L., Subramaniyaswamy, V., Devarajan, M.,
Ravichandran, K., Arunkumar, S., Indragandhi,
V., and Vijayakumar, V. (2019). Secrecsy: A secure
framework for enhanced privacy-preserving location
recommendations in cloud environment. Wireless
Personal Communications, pages 1–39.
Ravi, L. and Vairavasundaram, S. (2016). A collaborative
location based travel recommendation system through
enhanced rating prediction for the group of users.
Computational intelligence and neuroscience, 2016.
Sen, A. (1986). Social choice theory. Handbook of
mathematical economics, 3:1073–1181.
Si, Y., Zhang, F., and Liu, W. (2017). Ctf-ara: An adaptive
method for poi recommendation based on check-in
and temporal features. Knowledge-Based Systems,
128:59–70.
Silva, J. and Lacerda, Y. (2017). Moveandshot - um
aplicativo para recomendac¸
˜
ao dos melhores pontos
para captura de fotografias. In Anais do XIII Simp
´
osio
Brasileiro de Sistemas de Informac¸
˜
ao, pages 190–197,
Porto Alegre, RS, Brasil. SBC.
Silva, P., Juneja, B., Desai, S., Singh, A., and Fawaz,
N. (2023). Representation online matters: Practical
end-to-end diversification in search and recommender
systems. In Proceedings of the 2023 ACM Conference
on Fairness, Accountability, and Transparency,
FAccT ’23, page 1735–1746, New York, NY, USA.
Association for Computing Machinery.
Tobler, W. R. (1970). A computer movie simulating urban
growth in the detroit region. Economic Geography,
46:234–240.
Yan, D., Zhao, X., and Guo, Z. (2018). Personalized
poi recommendation based on subway network
features and users’ historical behaviors. Wireless
Communications and Mobile Computing, 2018.
Zheng, V. W., Zheng, Y., Xie, X., and Yang, Q. (2010).
Collaborative location and activity recommendations
with gps history data. In Proceedings of the 19th
international conference on World wide web, pages
1029–1038. ACM.
Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen,
G. (2005). Improving recommendation lists through
topic diversification. In Proceedings of the 14th
International Conference on World Wide Web, WWW
’05, page 22–32, New York, NY, USA. ACM.
WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies
46