suitable for wider clinical use and diffusion in the 
future. 
REFERENCES 
Alis, D., Alis, C., Yergin, M., Topel, C., Asmakutlu, O., 
Bagcilar, O., ... & Karaarslan, E. 2022. A joint 
convolutional-recurrent neural network with an 
attention mechanism for detecting intracranial 
hemorrhage on noncontrast head CT. Scientific 
Reports, 12(1), 2084. 
Al'Aref, S. J., & Min, J. K. 2019. Cardiac CT: current 
practice and emerging applications. Heart (British 
Cardiac Society), 105(20), 1597–1605.  
Beck, J., Stern, M., & Haugsjaa, E. 1996. Applications of 
AI in Education. XRDS: Crossroads, The ACM 
Magazine for Students, 3(1), 11-15. 
Bharath Kumar Chowdary, P., Jahnavi, P., Rani, S. S., 
Chowdary, T. J., & Srija, K. 2022. Detection and 
Classification of Cerebral Hemorrhage Using Neural 
Networks. In Proceedings of Second International 
Conference on Advances in Computer Engineering and 
Communication Systems: ICACECS 2021 (pp. 555-
564). Singapore: Springer Nature Singapore. 
Bloom, A. I., Neeman, Z., Floman, Y., Gomori, J., & Bar-
Ziv, J. 1996. Occipital condyle fracture and ligament 
injury: imaging by CT. Pediatric radiology, 26, 786-
790. 
Castiglioni, I., Rundo, L., Codari, M., Di Leo, G., Salvatore, 
C., Interlenghi, M., ... & Sardanelli, F. 2021. AI 
applications to medical images: From machine learning 
to deep learning. Physica medica, 83, 9-24. 
Eli-Chukwu, N. C. 2019. Applications of artificial 
intelligence in agriculture: A review. Engineering, 
Technology & Applied Science Research, 9(4). 
Haleem, A., Javaid, M., & Khan, I. H. 2019. Current status 
and applications of Artificial Intelligence (AI) in 
medical field: An overview. Current Medicine 
Research and Practice, 9(6), 231-237. 
Hussain, A., Yaseen, M. U., Imran, M., Waqar, M., 
Akhunzada, A., Al-Ja’afreh, M., & El Saddik, A. 2022. 
An attention-based ResNet architecture for acute 
hemorrhage detection and classification: Toward a 
Health 4.0 digital twin study. IEEE Access, 10, 126712-
126727. 
Iqbal, K. N., Azad, I., Emon, M. I. H., Amlan, N. S., & 
Aporna, A. A. 2022. Brain hemorrhage detection using 
hybrid machine learning algorithm (Doctoral 
dissertation, Brac University). 
Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, 
K., Miotto, R., Ali, M., ... & Dudley, J. T. 2018. 
Artificial intelligence in cardiology. Journal of the 
American College of Cardiology, 71(23), 2668-2679. 
Kumar, E. A., Nikitha, P., & Bai, P. J. 2023. Clinical profile 
of spontaneous cerebellar hemorrhage-An original 
article. International Archives of Integrated Medicine
, 
10(4). 
Lee, J. Y., Kim, J. S., Kim, T. Y., & Kim, Y. S. 2020. 
Detection and classification of intracranial 
haemorrhage on CT images using a novel deep-learning 
algorithm. Scientific reports, 10(1), 20546. 
Li, X., Sun, Z., & Zhang, L. 2023. Research advances of 
artificial intelligence-based medical imaging in the 
screening, diagnosis and prediction of pneumonia. 
Journal of Shandong University (Health Sciences), 
61(12), 13-20. (in Chinese) 
Peng, Q., Li, H. L., Wang, Y., & Lu, W. L. 2019. Changing 
trend regarding the burden on cerebrovascular diseases 
between 1990 and 2016 in China. Zhonghua liu Xing 
Bing xue za zhi= Zhonghua Liuxingbingxue Zazhi, 
40(4), 400-405. 
Pham, D. T., & Pham, P. T. N. 1999. Artificial intelligence 
in engineering. International Journal of Machine Tools 
and Manufacture, 39(6), 937-949. 
Qiu, Y., Chang, C. S., Yan, J. L., Ko, L., & Chang, T. S. 
2019. Semantic segmentation of intracranial 
hemorrhages in head CT scans. In 2019 IEEE 10th 
International Conference on Software Engineering and 
Service Science (ICSESS) (pp. 112-115). IEEE. 
Qiu, Y., Wang, J., Jin, Z., Chen, H., Zhang, M., & Guo, L. 
2022. Pose-guided matching based on deep learning for 
assessing quality of action on rehabilitation 
training. Biomedical Signal Processing and Control, 72, 
103323. 
Račić, L., Popović, T., & Šandi, S. 2021. Pneumonia 
detection using deep learning based on convolutional 
neural network. In 2021 25th International Conference 
on Information Technology (IT) (pp. 1-4). IEEE. 
Sun, G., Zhan, T., Owusu, B.G., Daniel, A.M., Liu, G., & 
Jiang, W. 2020. Revised reinforcement learning based 
on anchor graph hashing for autonomous cell activation 
in cloud-RANs. Future Generation Computer Systems, 
104, 60-73. 
Teramoto, A. 2019. Application of artificial intelligence in 
radiology.  Gan to Kagaku ryoho. Cancer & 
Chemotherapy, 46(3), 418-422. 
Wang, Y., & Li, C. 2013. Recent advances in the 
application of artificial intelligence in medical image 
processing.  Chinese Journal of Medical Physics, 
30(003), 4138-4143. (in Chinese) 
Yang, Y. J., & Bang, C. S. 2019. Application of artificial 
intelligence in gastroenterology. World journal of 
gastroenterology, 25(14), 1666. 
Zhang, T., Song, Z., Yang, J., Zhang, X., & Wei, J. 2021. 
Cerebral hemorrhage recognition based on Mask R-
CNN network. Sensing and Imaging
, 22(1), 1. 
Zhou, Y., Osman, A., Willms, M., Kunz, A., Philipp, S., 
Blatt, J., & Eul, S. 2023. Semantic Wireframe 
Detection. publica.fraunhofer.de.