parameters to achieve accurate, realistic, and detail-
preserving deformed clothing. Extensive experiments
have been conducted to optimize the proposed
method. Moving forward, the next phase of research
will focus on implementing and enhancing diffusion
models to generate complete virtual try-on figures.
Furthermore, attention will be directed towards
human accessories such as scarves, bracelets, and
headbands, expanding the scope of virtual try-on
applications.
REFERENCES
Song, D., Zhang, X., Zhou, J., Nie, W., Tong, R., & Liu, A.
(2023). Image-Based Virtual Try-On: A Survey. arXiv,
2311.04811.
Jetchev, N., & Bergmann, U.M. (2017). The Conditional
Analogy GAN: Swapping Fashion Articles on People
Images. 2017 IEEE International Conference on
Computer Vision Workshops (ICCVW), pp: 2287-2292.
Han, X., Wu, Z., Wu, Z., Yu, R., & Davis, L.S. (2017).
VITON: An Image-Based Virtual Try-on Network.
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp: 7543-7552.
Choi, S., Park, S., Lee, M.G., & Choo, J. (2021). VITON-
HD: High-Resolution Virtual Try-On via
Misalignment-Aware Normalization. IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), pp: 14126-14135.
Lee, S., Gu, G., Park, S.K., Choi, S., & Choo, J. (2022).
High-Resolution Virtual Try-On with Misalignment
and Occlusion-Handled Conditions. European
Conference on Computer Vision.
Cui, A., Mahajan, J., Shah, V., Gomathinayagam, P., &
Lazebnik, S. (2023). Street TryOn: Learning In-the-
Wild Virtual Try-On from Unpaired Person Images.
arXiv, 2311.16094.
Zhu, L., Yang, D., Zhu, T.L., Reda, F.A., Chan, W., Saharia,
C., Norouzi, M., & Kemelmacher-Shlizerman, I. (2023).
TryOnDiffusion: A Tale of Two UNets. 2023
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp: 4606-4615.
Kim, J., Gu, G., Park, M., Park, S.K., & Choo, J. (2023).
StableVITON: Learning Semantic Correspondence
with Latent Diffusion Model for Virtual Try-On. arXiv,
2312.01725.
Gou, J., Sun, S., Zhang, J., Si, J., Qian, C., & Zhang, L.
(2023). Taming the Power of Diffusion Models for
High-Quality Virtual Try-On with Appearance Flow.
Proceedings of the 31st ACM International Conference
on Multimedia.
Bookstein, F. L. (1989). Principal warps: Thin-plate splines
and the decomposition of deformations. IEEE
Transactions on pattern analysis and machine
intelligence, vol. 11(6), pp: 567-585.
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion
Probabilistic Models. arXiv, 2006.11239.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., &
Ommer, B. (2021). High-Resolution Image Synthesis
with Latent Diffusion Models. 2022 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), pp: 10674-10685.