accuracy and performance in experiments, this paper
also identify and discuss the limitations of these
methods in real-world applications. At the same time,
it can be foreseen that with the maturity and
advancement of explainable artificial intelligence
technology and the strengthening of privacy
protection measures, the application of deep learning
in the field of ovarian cancer will become more
extensive and efficient. Future work will need to
focus on more reliable model evaluation tools and
algorithms for handling diverse and irregular data sets.
REFERENCES
Banerjee, I., Ling, Y., Chen, M. C., Hasan, S. A., Langlotz,
C. P., Moradzadeh, N., ... & Lungren, M. P. 2019.
Comparative effectiveness of convolutional neural
network (CNN) and recurrent neural network (RNN)
architectures for radiology text report classification.
Artificial intelligence in medicine, 97, 79-88.
Buddenkotte, T., Rundo, L., Woitek, R., Escudero Sanchez,
L., Beer, L., Crispin-Ortuzar, M., ... & Schönlieb, C. B.
2023. Deep learning-based segmentation of multisite
disease in ovarian cancer. European radiology
experimental, 7(1), 77.
Datta, S., Si, Y., Rodriguez, L., Shooshan, S. E., Demner-
Fushman, D., & Roberts, K. 2020. Understanding
spatial language in radiology: Representation
framework, annotation, and spatial relation extraction
from chest X-ray reports using deep learning. Journal
of biomedical informatics, 108, 103473.
Gao, Y., Zeng, S., Xu, X., Li, H., Yao, S., Song, K., ... &
Gao, Q. 2022. Deep learning-enabled pelvic ultrasound
images for accurate diagnosis of ovarian cancer in
China: a retrospective, multicentre, diagnostic study.
The Lancet Digital Health, 4(3), e179-e187.
Ghoniem, R. M. 2020. A novel bio-inspired deep learning
approach for liver cancer diagnosis. Information, 11(2),
80.
Ghoniem, R. M., Algarni, A. D., Refky, B., & Ewees, A. A.
2021. Multi-modal evolutionary deep learning model
for ovarian cancer diagnosis. Symmetry, 13(4), 643.
Liu, Y., Liu, L., Yang, L., Hao, L. and Bao, Y., 2021.
Measuring distance using ultra-wideband radio
technology enhanced by extreme gradient boosting
decision tree (XGBoost). Automation in
Construction, 126, p.103678.
Qiu, Y., Wang, J., Jin, Z., Chen, H., Zhang, M., & Guo, L.
2022. Pose-guided matching based on deep learning for
assessing quality of action on rehabilitation
training. Biomedical Signal Processing and Control, 72,
103323.
Sadeghi, M. H., Sina, S., Omidi, H., Farshchitabrizi, A. H.,
& Alavi, M. 2024. Deep learning in ovarian cancer
diagnosis: a comprehensive review of various imaging
modalities. Polish Journal of Radiology, 89, e30.
Thompson, R. F., Valdes, G., Fuller, C. D., Carpenter, C.
M., Morin, O., Aneja, S., ... & Thomas Jr, C. R. 2018.
Artificial intelligence in radiation oncology: a
specialty-wide disruptive transformation?.
Radiotherapy and Oncology, 129(3), 421-426.
Wang, S., Liu, Z., Rong, Y., Zhou, B., Bai, Y., Wei, W., ...
& Tian, J. 2019. Deep learning provides a new
computed tomography-based prognostic biomarker for
recurrence prediction in high-grade serous ovarian
cancer. Radiotherapy and Oncology, 132, 171-177.
Wu, X., Wang, H. Y., Shi, P., Sun, R., Wang, X., Luo, Z., ...
& Wang, Y. 2022. Long short-term memory model–a
deep learning approach for medical data with
irregularity in cancer predication with tumor markers.
Computers in Biology and Medicine, 144, 105362.
Zhao, F., Yu, F., Trull, T., & Shang, Y. 2023. A new
method using LLMs for keypoints generation in
qualitative data analysis. In 2023 IEEE Conference on
Artificial Intelligence (CAI) (pp. 333-334). IEEE.
Ziyambe, B., Yahya, A., Mushiri, T., Tariq, M. U., Abbas,
Q., Babar, M., ... & Jabbar, S. 2023. A deep learning
framework for the prediction and diagnosis of ovarian
cancer in pre-and post-menopausal women.
Diagnostics, 13(10), 1703.