REFERENCES
Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V.
I., & Precise4Q Consortium. 2020. Explainability for
artificial intelligence in healthcare: a multidisciplinary
perspective. BMC medical informatics and decision
making, 20, 1-9.
Chen, Y., Tang, W., Huang, X., An, Y., Li, J., Yuan, S., ...
& Zhang, M. 2024. Mitophagy in intracerebral
hemorrhage: a new target for therapeutic intervention.
Neural Regeneration Research, 19(2), 316-323.
Fang, W., Chen, Y., & Xue, Q. 2021. Survey on research of
RNN-based spatio-temporal sequence prediction
algorithms. Journal on Big Data, 3(3), 97.
Gao, D., Feng, W., Qiao, Y., Jiang, X., & Zhang, Y. 2023.
Development and validation of a random forest model
to predict functional outcome in patients with
intracerebral hemorrhage. Neurological Sciences,
44(10), 3615-3627.
Gautam, A., & Raman, B. 2021. Towards effective
classification of brain hemorrhagic and ischemic stroke
using CNN. Biomedical Signal Processing and Control,
63, 102178.
Highton, J., Chong, Q. Z., Crawley, R., Schnabel, J. A., &
Bhatia, K. K. 2023. Evaluation of Randomized Input
Sampling for Explanation (RISE) for 3D XAI-Proof of
Concept for Black-Box Brain-Hemorrhage
Classification. In International Conference on Medical
Imaging and Computer-Aided Diagnosis (pp. 41-51).
Singapore: Springer Nature Singapore.
Kaggle. 2020. RSNA Intracranial Hemorrhage Detection.
https://www.kaggle.com/c/rsna-intracerebral-hemorrha
ge-detection/data.
Li, S., Zhang, J., Hou, X., Wang, Y., Li, T., Xu, Z., ... &
Liu, M. 2024. Prediction model for unfavorable
outcome in spontaneous intracerebral hemorrhage
based on machine learning. Journal of Korean
Neurosurgical Society, 67(1), 94.
Mahjoubi, M. A., Hamida, S., Siani, L. E., Cherradi, B., El
Abbassi, A., & Raihani, A. 2023. Deep Learning for
Cerebral Hemorrhage Detection and Classification in
Head CT Scans Using CNN. In 2023 3rd International
Conference on Innovative Research in Applied Science,
Engineering and Technology (IRASET) (pp. 1-8).
IEEE.
McGurgan, I. J., Ziai, W. C., Werring, D. J., Salman, R. A.
S., & Parry-Jones, A. R. 2021. Acute intracerebral
haemorrhage: diagnosis and management. Practical
Neurology, 21(2), 128-136.
Qiu, Y., Chang, C. S., Yan, J. L., Ko, L., & Chang, T. S.
2019. Semantic segmentation of intracranial
hemorrhages in head CT scans. In 2019 IEEE 10th
International Conference on Software Engineering and
Service Science (ICSESS) (pp. 112-115). IEEE.
Rao, B., Zohrabian, V., Cedeno, P., Saha, A., Pahade, J., &
Davis, M. A. 2021. Utility of artificial intelligence tool
as a prospective radiology peer reviewer—detection of
unreported intracranial hemorrhage. Academic
radiology, 28(1), 85-93.
Tanioka, S., Yago, T., Tanaka, K., Ishida, F., Kishimoto, T.,
Tsuda, K., ... & Suzuki, H. 2022. Machine learning
prediction of hematoma expansion in acute intra-
cerebral hemorrhage. Scientific Reports, 12(1), 12452.
Xu, R., Baracaldo, N., & Joshi, J. 2021. Privacy-preserving
machine learning: Methods, challenges and directions.
arXiv preprint arXiv:2108.04417.
Xu, W., He, J., & Shu, Y. 2020. Transfer learning and deep
domain adaptation. Advances and applications in deep
learning, 45.
Yun, T. J., Choi, J. W., Han, M., Jung, W. S., Choi, S. H.,
Yoo, R. E., & Hwang, I. P. 2023. Deep learning based
automatic detection algorithm for acute intracran