ments. Besides using EKF, other equivalent algo-
rithms may be tested, such as the Unscented Kalman
Filter (UKF). Additional improvements may also be
studied, such as implementing historical knowledge
that promotes the selection of newer innovative poses.
ACKNOWLEDGEMENTS
This work is financed by National Funds through
the FCT – Fundação para a Ciência e a Tec-
nologia, I.P. (Portuguese Foundation for Science
and Technology) within the project OmicBots,
with reference PTDC/ASP-HOR/1338/2021
(DOI:10.54499/PTDC/ASP-HOR/1338/2021).
Sandro Costa Magalhães is granted by the Por-
tuguese Foundation for Science and Technology
(FCT) through the ESF integrated into NORTE2020,
under scholarship agreement SFRH/BD/147117/2019
(DOI:10.54499/SFRH/BD/147117/2019).
REFERENCES
Birkl, R., Wofk, D., and Müller, M. (2023). MiDaS v3.1 –
a model zoo for robust monocular relative depth esti-
mation.
Chang, J., Kim, M., Kang, S., Han, H., Hong, S., Jang,
K., and Kang, S. (2021). GhostPose: Multi-view Pose
Estimation of Transparent Objects for Robot Hand
Grasping. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE.
FAO (2023). FAOSTAT Statistical Database. 2024-05-21.
General Assembly (2015). Transforming our world: the
2030 Agenda for sustainable development. Resolution
A/RES/70/1.
Gené-Mola, J., Llorens, J., Rosell-Polo, J. R., Gregorio, E.,
Arnó, J., Solanelles, F., Martínez-Casasnovas, J. A.,
and Escolà, A. (2020). Assessing the performance of
RGB-D sensors for 3D fruit crop canopy characteriza-
tion under different operating and lighting conditions.
Sensors-basel., 20(24):7072.
Kumar, M. S. and Mohan, S. (2022). Selective fruit harvest-
ing: Research, trends and developments towards fruit
detection and localization – a review. Proceedings of
the Institution of Mechanical Engineers, Part C: Jour-
nal of Mechanical Engineering Science, 237(6):1405–
1444.
Li, F., Vutukur, S. R., Yu, H., Shugurov, I., Busam,
B., Yang, S., and Ilic, S. (2023). NeRF-
Pose: A First-Reconstruct-Then-Regress Approach
for Weakly-supervised 6D Object Pose Estimation. In
2023 IEEE/CVF International Conference on Com-
puter Vision Workshops (ICCVW), pages 2115–2125.
Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., and
Fan, X. (2019). Accurate monocular 3D object de-
tection via color-embedded 3D reconstruction for au-
tonomous driving. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 6850–
6859, Seoul, Korea (South). IEEE.
Magalhães, S. A., Moreira, A. P., dos Santos, F. N., and
Dias, J. (2022). Active perception fruit harvesting
robots — a systematic review. Journal of Intelligent
& Robotic Systems, 105(14).
Magalhães, S. A. C., dos Santos, F. N., Moreira,
A. P., & Dias, J. M. M. (2024). MonoVi-
sual3DFilter: 3D tomatoes’ localisation with monoc-
ular cameras using histogram filters. Robotica, 1–20.
doi:10.1017/S0263574724000936
Nocedal, J., Öztoprak, F., and Waltz, R. A. (2014). An in-
terior point method for nonlinear programming with
infeasibility detection capabilities. Optim. Methods
Softw., 29(4):837–854.
Parisotto, T., Mukherjee, S., and Kasaei, H. (2023).
MORE: simultaneous multi-view 3D object recogni-
tion and pose estimation. Intelligent Service Robotics,
16(4):497–508.
Petersen, K. B. and Pedersen, M. S. (2012). The Matrix
Cookbook. Version 20121115.
Ringdahl, O., Kurtser, P., and Edan, Y. (2019). Performance
of RGB-D camera for different object types in green-
house conditions. In 2019 European Conference on
Mobile Robots (ECMR), pages 1–6, Prague, Czech Re-
public. IEEE.
The MathWorks, Inc. (2024). MATLAB 9.14.0.2206163
(R2023a).
Wang, H., Dong, L., Zhou, H., Luo, L., Lin, G., Wu, J., and
Tang, Y. (2021). YOLOv3-litchi detection method of
densely distributed litchi in large vision scenes. Math.
Probl. Eng., 2021:1–11.
BVE + EKF: A Viewpoint Estimator for the Estimation of the Object’s Position in the 3D Task Space Using Extended Kalman Filters
165