Du Plessis, M. C., Niu, G., and Sugiyama, M. (2014). Anal-
ysis of learning from positive and unlabeled data. Ad-
vances in neural information processing systems, 27.
Gallo, G., Grigoriadis, M. D., and Tarjan, R. E. (1989). A
fast parametric maximum flow algorithm and applica-
tions. SIAM Journal on Computing, 18(1):30–55.
Hochbaum, D. S. (1998). The pseudoflow algorithm and
the pseudoflow-based simplex for the maximum flow
problem. In International Conference on Integer
Programming and Combinatorial Optimization, pages
325–337. Springer.
Hochbaum, D. S. (2002). Solving integer programs
over monotone inequalities in three variables: A
framework for half integrality and good approxima-
tions. European Journal of Operational Research,
140(2):291–321.
Hochbaum, D. S. (2008). The pseudoflow algorithm: A new
algorithm for the maximum-flow problem. Operations
research, 56(4):992–1009.
Hochbaum, D. S. (2010). Polynomial time algorithms for
ratio regions and a variant of normalized cut. IEEE
transactions on pattern analysis and machine intelli-
gence, 32(5):889–898.
Hochbaum, D. S. (2021). Applications and efficient algo-
rithms for integer programming problems on mono-
tone constraints. Networks, 77(1):21–49.
Hochbaum, D. S. and Orlin, J. B. (2013). Simplifications
and speedups of the pseudoflow algorithm. Networks,
61(1):40–57.
Jebara, T., Wang, J., and Chang, S.-F. (2009). Graph con-
struction and b-matching for semi-supervised learn-
ing. In Proceedings of the 26th annual international
conference on machine learning, pages 441–448.
Kelly, M., Longjohn, R., and Nottingham, K.
Khan, S. S. and Madden, M. G. (2014). One-class classifi-
cation: taxonomy of study and review of techniques.
The Knowledge Engineering Review, 29(3):345–374.
Kiryo, R., Niu, G., Du Plessis, M. C., and Sugiyama, M.
(2017). Positive-unlabeled learning with non-negative
risk estimator. Advances in neural information pro-
cessing systems, 30.
Lee, W. S. and Liu, B. (2003). Learning with positive
and unlabeled examples using weighted logistic re-
gression. In ICML, volume 3, pages 448–455.
Li, H., Chen, Z., Liu, B., Wei, X., and Shao, J. (2014). Spot-
ting fake reviews via collective positive-unlabeled
learning. In 2014 IEEE international conference on
data mining, pages 899–904. IEEE.
Li, W., Guo, Q., and Elkan, C. (2010). A positive and unla-
beled learning algorithm for one-class classification of
remote-sensing data. IEEE transactions on geoscience
and remote sensing, 49(2):717–725.
Li, X. and Liu, B. (2003). Learning to classify texts using
positive and unlabeled data. In IJCAI, volume 3, pages
587–592. Citeseer.
Liu, B., Lee, W. S., Yu, P. S., and Li, X. (2002). Partially
supervised classification of text documents. In ICML,
volume 2, pages 387–394. Sydney, NSW.
Lu, F. and Bai, Q. (2010). Semi-supervised text catego-
rization with only a few positive and unlabeled doc-
uments. In 2010 3rd International conference on
biomedical engineering and informatics, volume 7,
pages 3075–3079. IEEE.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.
Ren, Y., Ji, D., and Zhang, H. (2014). Positive unlabeled
learning for deceptive reviews detection. In Proceed-
ings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 488–
498.
Spaen, Q., As
´
ın-Ach
´
a, R., Chettih, S. N., Minderer, M.,
Harvey, C., and Hochbaum, D. S. (2019). Hnccorr:
A novel combinatorial approach for cell identification
in calcium-imaging movies. eneuro, 6(2).
Wilton, J., Koay, A., Ko, R., Xu, M., and Ye, N. (2022).
Positive-unlabeled learning using random forests via
recursive greedy risk minimization. Advances in
Neural Information Processing Systems, 35:24060–
24071.
Yang, P., Li, X., Chua, H.-N., Kwoh, C.-K., and Ng, S.-
K. (2014a). Ensemble positive unlabeled learning for
disease gene identification. PloS one, 9(5):e97079.
Yang, P., Li, X.-L., Mei, J.-P., Kwoh, C.-K., and Ng, S.-K.
(2012). Positive-unlabeled learning for disease gene
identification. Bioinformatics, 28(20):2640–2647.
Yang, Y. T., Fishbain, B., Hochbaum, D. S., Norman, E. B.,
and Swanberg, E. (2014b). The supervised normal-
ized cut method for detecting, classifying, and identi-
fying special nuclear materials. INFORMS Journal on
Computing, 26(1):45–58.
Yi, J., Hsieh, C.-J., Varshney, K. R., Zhang, L., and Li, Y.
(2017). Scalable demand-aware recommendation. Ad-
vances in neural information processing systems, 30.
Zhang, C., Ren, D., Liu, T., Yang, J., and Gong, C.
(2019). Positive and unlabeled learning with label dis-
ambiguation. In IJCAI, pages 4250–4256.
Positive-Unlabeled Learning Using Pairwise Similarity and Parametric Minimum Cuts
71