national Conference on Pattern Recognition (ICPR),
pages 4829–4836. IEEE.
Chen, Y., Pan, T., He, C., and Cheng, R. (2020a). Effi-
cient Evolutionary Deep Neural Architecture Search
(NAS) by Noisy Network Morphism Mutation, pages
497–508.
Chen, Y.-C., Gao, C., Robb, E., and Huang, J.-B. (2020b).
Nas-dip: Learning deep image prior with neural archi-
tecture search. In Vedaldi, A., Bischof, H., Brox, T.,
and Frahm, J.-M., editors, Computer Vision – ECCV
2020, pages 442–459, Cham. Springer International
Publishing.
Chu, X., Zhang, B., Ma, H., Xu, R., and Li, Q. (2020). Fast,
accurate and lightweight super-resolution with neural
architecture search.
Elsken, T., Metzen, J. H., and Hutter, F. (2018). Efficient
multi-objective neural architecture search via lamar-
ckian evolution. arXiv preprint arXiv:1804.09081.
Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust
and efficient hyperparameter optimization at scale. In
International conference on machine learning, pages
1437–1446. PMLR.
Huang, H., Shen, L., He, C., Dong, W., and Liu, W. (2022).
Differentiable neural architecture search for extremely
lightweight image super-resolution. IEEE Transac-
tions on Circuits and Systems for Video Technology.
Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011).
Sequential model-based optimization for general al-
gorithm configuration. In Learning and Intelligent
Optimization: 5th International Conference, LION 5,
Rome, Italy, January 17-21, 2011. Selected Papers 5,
pages 507–523. Springer.
Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B.,
and Xing, E. P. (2018). Neural architecture search
with bayesian optimisation and optimal transport. Ad-
vances in neural information processing systems, 31.
Lu, Z., Cheng, R., Huang, S., Zhang, H., Qiu, C., and Yang,
F. (2022). Surrogate-assisted multiobjective neural ar-
chitecture search for real-time semantic segmentation.
IEEE Transactions on Artificial Intelligence.
Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. (2018).
Neural architecture optimization. Advances in neural
information processing systems, 31.
Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019).
Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on arti-
ficial intelligence, volume 33, pages 4780–4789.
Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,
Tan, J., Le, Q. V., and Kurakin, A. (2017). Large-
scale evolution of image classifiers. In International
Conference on Machine Learning, pages 2902–2911.
PMLR.
Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G. G., and
Zhang, M. (2019). Surrogate-assisted evolutionary
deep learning using an end-to-end random forest-
based performance predictor. IEEE Transactions on
Evolutionary Computation, 24(2):350–364.
Wei, T., Wang, C., Rui, Y., and Chen, C. W. (2016). Net-
work morphism. In International conference on ma-
chine learning, pages 564–572. PMLR.
White, C., Neiswanger, W., and Savani, Y. (2021). Bananas:
Bayesian optimization with neural architectures for
neural architecture search. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages
10293–10301.
Wistuba, M., Rawat, A., and Pedapati, T. (2019). A sur-
vey on neural architecture search. arXiv preprint
arXiv:1905.01392.
Xie, X., Song, X., Lv, Z., Yen, G. G., Ding, W., and
Sun, Y. (2023). Efficient evaluation methods for neu-
ral architecture search: A survey. arXiv preprint
arXiv:2301.05919.
Xue, Y., Zhang, Z., and Neri, F. (2024). Similar-
ity surrogate-assisted evolutionary neural architecture
search with dual encoding strategy. Electronic re-
search archive, 32(2):1017–1043.
Zhu, H., An, Z., Yang, C., Xu, K., Zhao, E., and Xu, Y.
(2019). Eena: efficient evolution of neural architec-
ture. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 0–
0.
Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018).
Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–
8710.
Surrogate Modeling for Efficient Evolutionary Multi-Objective Neural Architecture Search in Super Resolution Image Restoration
249