ACKNOWLEDGEMENTS
This research was funded by the ARC Industrial
Transformation Training Centre for Information
Resilience (CIRES). The authors gratefully
acknowledge the support provided by CIRES, which
has been instrumental in conducting this work.
REFERENCES
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-
Box: A Survey on Explainable Artificial Intelligence
(XAI). IEEE Access, 6, 52138-52160.
https://doi.org/10.1109/ACCESS.2018.2870052
AIIM. (2024, April 5). Intelligent Information Management
Glossary. https://www.aiim.org/what-is-information-
management
Altheide, D. L., & Schneider, C. J. (2013). Qualitative
media analysis (2nd edition ed.). Sage.
Andrada, G., Clowes, R. W., & Smart, P. R. (2023).
Varieties of transparency: exploring agency within AI
systems. AI & SOCIETY, 38(4), 1321-1331.
https://doi.org/10.1007/s00146-021-01326-6
Auster, E., & Choo, C. W. (1994). How senior managers
acquire and use information in environmental scanning.
Information Processing & Management, 30(5), 607-
618.
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J.,
Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-
Lopez, S., Molina, D., Benjamins, R., Chatila, R., &
Herrera, F. (2020). Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI [Article]. Information
Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.20
19.12.012
Baviskar, D., Ahirrao, S., Potdar, V., & Kotecha, K. V.
(2021). Efficient Automated Processing of the
Unstructured Documents Using Artificial Intelligence:
A Systematic Literature Review and Future Directions.
IEEE Access, 9, 72894-72936.
Brennen, A. (2020). What do people really want when they
say they want "explainable AI?" we asked 60
stakeholders. Conference on Human Factors in
Computing Systems - Proceedings,
Bunn, J. (2020). Working in contexts for which
transparency is important: A recordkeeping view of
explainable artificial intelligence (XAI). Records
Management Journal, 30(2), 143-153.
De Certeau, M., & Mayol, P. (1998). The Practice of
Everyday Life: Living and Cooking. Volume 2 (Vol. 2).
U of Minnesota Press.
De, T., Giri, P., Mevawala, A., Nemani, R., & Deo, A.
(2020). Explainable AI: A Hybrid Approach to
Generate Human-Interpretable Explanation for Deep
Learning Prediction. Procedia Computer Science, 168,
40-48.
https://doi.org/https://doi.org/10.1016/j.procs.2020.02.
255
Duranti, L., Abdul-Mageed, M., Hofman, D., & Sullivan,
P. (2022). I Trust AI, the latest InterPARES research
project. Anuario Escuela de Archivología(13), 36-55.
Felzmann, H., Fosch Villaronga, E., Lutz, C., & Tamò
Larrieux, A. (2019). Transparency you can trust:
Transparency requirements for artificial intelligence
between legal norms and contextual concerns. 6, 1-14.
https://doi.org/10.1177/2053951719860542
Fensham, R., Threadgold, T., Webb, J., Schirato, T., &
Danaher, G. (2020). Understanding Bourdieu.
Routledge.
Goudarouli, E., Sexton, A., & Sheridan, J. (2019). The
challenge of the digital and the future archive: through
the lens of the national archives uk. Philosophy &
Technology, 32, 173-183.
Gupta, A., & Kapoor, N. (2020). Comprehensiveness of
archives: A modern AI-enabled approach to build
comprehensive shared cultural heritage. arXiv preprint
arXiv:2008.04541.
Haresamudram, K., Larsson, S., & Heintz, F. (2023). Three
Levels of AI Transparency. Computer, 56(2), 93-100.
https://doi.org/10.1109/MC.2022.3213181
Hausmann, V., Williams, S. P., Hardy, C. A., & Schubert,
P. (2014). Enterprise Information Management
Readiness: A Survey of Current Issues, Challenges and
Strategy. Procedia technology, 16, 42-51.
https://doi.org/10.1016/j.protcy.2014.10.066
Huddart, K. (2022). Artificial intelligence powered digital
asset management: Current state and future potential.
Journal of Digital Media Management, 11(1), 6-17.
Jaakonmäki, R., Simons, A., Müller, O., & vom Brocke, J.
(2018). ECM implementations in practice: objectives,
processes, and technologies. Journal of Enterprise
Information Management, 31(5), 704-723.
Jaillant, L. (2022). How can we make born-digital and
digitised archives more accessible? Identifying
obstacles and solutions. Archival Science, 22(3), 417-
436.
Kiseleva, A., Kotzinos, D., & De Hert, P. (2022).
Transparency of AI in Healthcare as a Multilayered
System of Accountabilities: Between Legal
Requirements and Technical Limitations [Review].
Frontiers in Artificial Intelligence, 5.
https://doi.org/10.3389/frai.2022.879603
Kolandaisamy, R., Rajagopal, H., Kolandaisamy, I., &
Sinnappan, G. S. (2024). The Smart Document
Processing with Artificial Intelligence.
Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner,
L., Schmidt, E., Sesing, A., & Baum, K. (2021). What
do we want from Explainable Artificial Intelligence
(XAI)? – A stakeholder perspective on XAI and a
conceptual model guiding interdisciplinary XAI
research [Article]. Artificial Intelligence, 296, Article
103473. https://doi.org/10.1016/j.artint.2021.103473
Lau, F., Antonio, M., Davison, K., Queen, R., & Bryski, K.
(2020). An environmental scan of sex and gender in
electronic health records: analysis of public information