the easiest hard problem, number partitioning prob-
lem, combi-natorial optimization.
Jain, A. S. and Meeran, S. (1999). Deterministic job-shop
scheduling: Past, present and future. European jour-
nal of operational research, 113(2):390–434.
Jansen, R., Horn, R., van Eck, O., Verduin, K., Thomson,
S. L., and van den Berg, D. (2023). Can hp-protein
folding be solved with genetic algorithms? maybe not.
Kommandeur, J., Koutstaal, J., Timmer, R., Jansen, R., and
Weise, T. (2024). Two fast but unsuccessful algo-
rithms for generating randomly folded proteins in hp.
Evostar LBAs.
Koppenhol, L., Brouwer, N., Dijkzeul, D., Pijning, I.,
Sleegers, J., and Van Den Berg, D. (2022). Exactly
characterizable parameter settings in a crossoverless
evolutionary algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1640–1649.
Koutstaal, J., Kommandeur, J., Timmer, R., Horn, R.,
Thomson, S. L., and van den Berg, D. (2024). Fre-
quency fitness assignment for untangling proteins in
2d. Evostar LBAs.
Lawler, E. L., Lenstra, J. K., Kan, A. H. R., and Shmoys,
D. B. (1993). Sequencing and scheduling: Algorithms
and complexity. Handbooks in operations research
and management science, 4:445–522.
Lenstra, J. K. and Kan, A. R. (1979). Computational com-
plexity of discrete optimization problems. In Annals
of discrete mathematics, volume 4, pages 121–140.
Elsevier.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., Thomson,
S. L., and Weise, T. (2024). Addressing the trav-
eling salesperson problem with frequency fitness as-
signment and hybrid algorithms.
Liang, T., Wu, Z., L
¨
assig, J., van den Berg, D., and Weise, T.
(2022). Solving the traveling salesperson problem us-
ing frequency fitness assignment. In 2022 IEEE Sym-
posium Series on Computational Intelligence (SSCI),
pages 360–367. IEEE.
MacFarlane, A., Secker, A., May, P., and Timmis, J. (2010).
An experimental comparison of a genetic algorithm
and a hill-climber for term selection. Journal of doc-
umentation, 66(4):513–531.
Pham, D.-N. and Klinkert, A. (2008). Surgical case
scheduling as a generalized job shop scheduling prob-
lem. European Journal of Operational Research,
185(3):1011–1025.
Pijning, I. (2024). https://github.com/irispijning/jssp ffa.
Russell, S. J. and Norvig, P. (2010). Artificial intelligence a
modern approach. London.
Sazhinov, N., Horn, R., Adriaans, P., and van den Berg, D.
(2023). The partition problem, and how the distribu-
tion of input bits affects the solving process (submit-
ted).
Sleegers, J., Thomson, S. L., and van Den Berg, D. (2022).
Universally hard hamiltonian cycle problem instances.
Strassl, S. and Musliu, N. (2022). Instance space analy-
sis and algorithm selection for the job shop schedul-
ing problem. Computers & Operations Research,
141:105661.
Streeter, M. J. and Smith, S. F. (2006). How the landscape
of random job shop scheduling instances depends on
the ratio of jobs to machines. Journal of Artificial In-
telligence Research, 26:247–287.
Sutton, A. M. (2007). An analysis of search landscape neu-
trality in scheduling problems. In Proceedings of the
ICAPS, page 79.
Thomson, S. L., Ochoa, G., van den Berg, D., Liang, T.,
and Weise, T. (2024). Entropy, search trajectories, and
explainability for frequency fitness assignment. to ap-
pear).
Tsogbetse, I., Bernard, J., Manier, H., and Manier, M.-
A. (2022). Impact of encoding and neighborhood on
landscape analysis for the job shop scheduling prob-
lem. IFAC-PapersOnLine, 55(10):1237–1242.
van den Berg, D. and Adriaans, P. (2021). Subset sum and
the distribution of information. In IJCCI, pages 134–
140.
van Hoorn, J. J. (2015). Jobshop instances and solutions.
Van Hoorn, J. J. (2018). The current state of bounds on
benchmark instances of the job-shop scheduling prob-
lem. Journal of Scheduling, 21(1):127–128.
Vanneschi, L., Tomassini, M., Collard, P., V
´
erel, S., Pirola,
Y., and Mauri, G. (2007). A comprehensive view of
fitness landscapes with neutrality and fitness clouds.
In Genetic Programming: 10th European Conference,
EuroGP 2007, Valencia, Spain, April 11-13, 2007.
Proceedings 10, pages 241–250. Springer.
Verduin, K., Horn, R., van Eck, O., Jansen, R., Weise, T.,
and van den Berg, D. (2024). The traveling tourna-
ment problem: Rows-first versus columns-first. ICEIS
2024, pages 447–455.
Verduin, K., Thomson, S. L., and van den Berg, D.
(2023a). Too constrained for genetic algorithms. too
hard for evolutionary computing. the traveling tourna-
ment problem.
Verduin, K., Weise, T., and van den Berg, D. (2023b). Why
is the traveling tournament problem not solved with
genetic algorithms?
Weise, T., Li, X., Chen, Y., and Wu, Z. (2021). Solving
job shop scheduling problems without using a bias
for good solutions. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1459–1466.
Weise, T., Wan, M., Wang, P., Tang, K., Devert, A., and
Yao, X. (2013). Frequency fitness assignment. vol-
ume 18, pages 226–243. IEEE.
Weise, T., Wu, Z., Li, X., and Chen, Y. (2020). Frequency
fitness assignment: Making optimization algorithms
invariant under bijective transformations of the objec-
tive function value. IEEE Transactions on Evolution-
ary Computation, 25(2):307–319.
Weise, T., Wu, Z., Li, X., Chen, Y., and L
¨
assig, J. (2022).
Frequency fitness assignment: optimization without
bias for good solutions can be efficient. IEEE Trans-
actions on Evolutionary Computation.
Yu, T. and Miller, J. (2002). Finding needles in haystacks
is not hard with neutrality. In Genetic Programming:
5th European Conference, EuroGP 2002 Kinsale, Ire-
land, April 3–5, 2002 Proceedings 5, pages 13–25.
Springer.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
260