and apply the appropriate algorithms to solve the
prediction problem.
REFERENCES
Awan, M. J., Khan, M. A., Ansari, Z. K., Yasin, A., &
Shehzad, H. M. F. 2022. Fake profile recognition
using big data analytics in social media platforms.
International Journal of Computer Applications in
Technology, 68(3), 215.
Ahmad, N., Awan, M. J., Nobanee, H., Zain, A. M.,
Naseem, A., & Mahmoud, A. 2024. Customer
personality analysis for churn prediction using hybrid
ensemble models and class balancing techniques.
IEEE Access, 12, 1865–1879.
Ahn, J., Hwang, J., Kim, D., Choi, H., & Kang, S. 2020. A
survey on churn analysis in various business domains.
IEEE Access, 8, 220816–220839.
Ahmed, U., Khan, A., Khan, S. H., Basit, A., Haq, I. U., &
Lee, Y. S. 2019. Transfer learning and meta
classification based deep churn prediction system for
telecom industry. arXiv.
Bose, R. 2002. Customer Relationship management: key
components for IT success. Industrial Management
and Data Systems, 102(2), 89–97.
Chandar, M., and Krishna, P. A. L. 2006. Modeling churn
behavior of bank customers using predictive data
mining techniques. Proc. Nat. Conf. Soft Comput.
Techn. Eng. Appl. (SCT), pp. 24-26.
Dahiya, K., & Bhatia, S. 2015. Customer churn analysis in
telecom industry. ICRITO.
De Andrade Moral, R., Chen, Z., Zhang, S., McClean, S.,
Palma, G. R., Allan, B., & Kegel, I. 2022. Profiling
television watching behavior using Bayesian
hierarchical joint models for Time-to-Event and Count
data. IEEE Access, 10, 113018–113027.
Deng, X., Oda, S., Kawano, Y., 2023. Graphene-based
midinfrared photodetector with bull’ s eye plasmonic
antenna. Optical Engineering, 62(9), p. 097102-
097102.
Ebiaredoh-Mienye, S. A., Esenogho, E., & Swart, T. G.
2021. Artificial neural network technique for
improving prediction of credit card default: A stacked
sparse autoencoder approach. International Journal of
Power Electronics and Drive Systems, 11(5), 4392.
Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep
Learning, Cambridge. MA, USA:MIT Press.
Hassouna, M. S., Tarhini, A., Elyas, T., & AbouTrab, M. S.
2015. Customer churn in Mobile Markets: A
comparison of Techniques. International Business
Research, 8(6).
Jahromi, A. T., Sepehri, M. M., Teimourpour, B., &
Choobdar, S. 2010. Modeling customer churn in a
non-contractual setting: the case of
telecommunications service providers. Journal of
Strategic Marketing, 18(7), 587–598.
Komenar, M. 1996. Electronic marketing.
Lee, E., Jang, Y., Yoon, D., Jeon, J., Yang, S., Lee, S., Kim,
D., Chen, P. P., Guitart, A., Bertens, P., Periáñez, Á.,
Hadiji, F., Müller, M., Joo, Y., Lee, J., Hwang, I., &
Kim, K. J. 2019. Game data mining competition on
churn prediction and survival analysis using
commercial game log data. IEEE Transactions on
Games, 11(3), 215–226.
Nath, S. V. and Behara, R. S. 2003. Customer churn
analysis in the wireless industry: A data mining
approach. Proc. Annu. Meeting Decis. Sci. Inst., vol.
561, pp. 505-510.
Panimalar, S. A., & Krishnakumar, A. 2023. Customer
churn prediction model in cloud environment using
DFE-WUNB: ANN deep feature extraction with
Weight Updated Tuned Naïve Bayes classification
with Block-Jacobi SVD dimensionality reduction.
Engineering Applications of Artificial Intelligence,
126, 107015.
Parvatiyar, A. and Sheth, J. N. 2001. Customer relationship
management: Emerging practice process and
discipline. J. Econ. Social Res., vol. 3, no. 2.
Pamina, J., Raja, J., Bama, S. S., Soundarya, S., Sruthi, M.
S., Kiruthika, S., Aiswaryadevi, V. J., & Priyanka, G.
2019. An effective classifier for predicting churn in
telecommunication. Journal of Advanced Research in
Dynamic and Control Systems, 11, 221–229.
Qiu, Y., Chen, P., Lin, Z., Yang, Y., Zeng, L., & Fan, Y.
(2020, June). Clustering Analysis for Silent Telecom
Customers Based on K-means++. In 2020 IEEE 4th
Information Technology, Networking, Electronic and
Automation Control Conf. (ITNEC) (Vol. 1, pp. 1023-
1027). IEEE.
Seo, D., & Yoo, Y. 2023. Improving shopping mall revenue
by Real-Time Customized digital coupon issuance.
IEEE Access, 11, 7924–7932.
Shaw, M. J., Subramaniam,C., Tan, G. W. and Welge, M.
E. 2001. Knowledge management and data mining for
marketing. Decis. Support Syst., vol. 31, no. 1, pp.
127-137.
Sugaya, T., Deng, X., 2019. Resonant frequency tuning of
terahertz plasmonic structures based on solid
immersion method. 2019 44th International
Conference on Infrared, Millimeter, and Terahertz
Waves, p.1-2.
Umayaparvathi, V., & Iyakutti, K. 2012. Applications of
data mining techniques in telecom churn prediction.
International Journal of Computer Applications,
42(20), 5–9.
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., &
Kim, S. W. 2019. A Churn Prediction Model using
Random Forest: Analysis of machine learning
techniques for churn prediction and factor identification
in telecom sector. IEEE Access, 7, 60134–60149.
Verbraken, T., Verbeke, W., & Baesens, B. 2014. Profit
optimizing customer churn prediction with Bayesian
network classifiers. Intelligent Data Analysis (Print),
18(1), 3–24.
Zhang, R., Li, W., Tan, W. M., & Mo, T. 2017. Deep and
shallow model for insurance churn prediction service.
SCC.