New York, NY, USA. Association for Computing Ma-
chinery.
Duangsoithong, R. and Windeatt, T. (2009). Relevant and
redundant feature analysis with ensemble classifica-
tion. In 2009 Seventh International Conference on
Advances in Pattern Recognition, pages 247–250.
Fung, G., Liu, J., Chan, K., and Lau, R. (1997). Fuzzy
genetic algorithm approach to feature selection prob-
lem. In Proceedings of 6th International Fuzzy Sys-
tems Conference, volume 1, pages 441–446 vol.1.
Garc
´
ıa, S., Luengo, J., Herrera, F., et al. (2015). Data pre-
processing in data mining, volume 72. Springer.
Goldman, B. W. and Punch, W. F. (2013). Reducing wasted
evaluations in cartesian genetic programming. In
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A. S¸.,
and Hu, B., editors, Genetic Programming, pages 61–
72. Springer Berlin Heidelberg.
Goldman, B. W. and Punch, W. F. (2015). Analysis of
cartesian genetic programming’s evolutionary mech-
anisms. 19(3):359–373.
Hall, M. A. and Smith, L. A. (1997). Feature subset selec-
tion: a correlation based filter approach.
Hern
´
andez, M. A. and Stolfo, S. J. (1998). Real-world data
is dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1):9–37.
Kalkreuth, R., Rudolph, G., and Droschinsky, A. (2017).
A new subgraph crossover for cartesian genetic pro-
gramming. In McDermott, J., Castelli, M., Sekanina,
L., Haasdijk, E., and Garc
´
ıa-S
´
anchez, P., editors, Ge-
netic Programming, pages 294–310. Springer Interna-
tional Publishing.
Kelly, M., Longjohn, R., and Nottingham, K. The UCI ma-
chine learning repository. https://archive.ics.uci.edu.
Kruschke, J. K. (2013). Bayesian estimation supersedes the
t test. Journal of Experimental Psychology: General,
142(2):573–603.
Kumar, S. and Chaurasiya, V. K. (2019). A strategy for
elimination of data redundancy in internet of things
(iot) based wireless sensor network (wsn). IEEE Sys-
tems Journal, 13(2):1650–1657.
Miller, J. and Smith, S. (2006). Redundancy and com-
putational efficiency in cartesian genetic program-
ming. IEEE Transactions on Evolutionary Computa-
tion, 10(2):167–174.
Miller, J. F. (1999). An empirical study of the efficiency of
learning boolean functions using a cartesian genetic
programming approach. In Proceedings of the 1st An-
nual Conference on Genetic and Evolutionary Com-
putation - Volume 2, GECCO’99, page 1135–1142,
San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.
Miller, J. F. (2011). Cartesian Genetic Programming.
Springer Berlin Heidelberg.
Miller, J. F. (2020). Cartesian genetic programming: its sta-
tus and future. Genetic Programming and Evolvable
Machines, 21(1):129–168.
P
¨
atzel, D. (2023). cmpbayes. https://github.com/dpaetzel/
cmpbayes.
Rong, M., Gong, D., and Gao, X. (2019). Feature selec-
tion and its use in big data: Challenges, methods, and
trends. IEEE Access, 7:19709–19725.
Stegherr., H., Heider., M., and H
¨
ahner., J. (2023). Assisting
convergence behaviour characterisation with unsuper-
vised clustering. In Proceedings of the 15th Inter-
national Joint Conference on Computational Intelli-
gence - ECTA, pages 108–118. INSTICC, SciTePress.
Tiwari, R. and Singh, M. P. (2010). Correlation-based at-
tribute selection using genetic algorithm. Interna-
tional Journal of Computer Applications, 4(8):28–34.
Tsai, C.-F., Eberle, W., and Chu, C.-Y. (2013). Ge-
netic algorithms in feature and instance selection.
Knowledge-Based Systems, 39:240–247.
Turner, A. J. and Miller, J. F. (2015). Neutral genetic drift:
an investigation using cartesian genetic programming.
16(4):531–558.
White, D., Mcdermott, J., Castelli, M., Manzoni, L., Gold-
man, B., Kronberger, G., Ja
´
skowski, W., O’Reilly, U.-
M., and Luke, S. (2013). Better gp benchmarks: Com-
munity survey results and proposals. 14:3–29.
Xu, S., Zhou, X., and Sun, Y.-n. (2009). A genetic
algorithm-based feature selection method for human
identification based on ground reaction force. In Pro-
ceedings of the First ACM/SIGEVO Summit on Ge-
netic and Evolutionary Computation, GEC ’09, page
665–670, New York, NY, USA. Association for Com-
puting Machinery.
Yu, T. and Miller, J. (2001). Neutrality and the evolv-
ability of boolean function landscape. In Miller, J.,
Tomassini, M., Lanzi, P. L., Ryan, C., Tettamanzi, A.
G. B., and Langdon, W. B., editors, Genetic Program-
ming, pages 204–217. Springer Berlin Heidelberg.
APPENDIX
Results for Duplicated Attributes
Table 2 shows our results for all datasets when at-
tributes are duplicated, according to Algorithm 1.
Results for Duplicated and Noised
Attributes
Table 3 shows our results for all datasets when at-
tributes are duplicated and then noised, according to
Algorithm 2.
Results for Adding Pure Noise
Table 4 shows our results for all datasets when the
additional attributes are pure noise, according to Al-
gorithm 3.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
116