REFERENCES
Applegate, D. L., Bixby, R. E., Chv
´
atal, V., Cook, W.,
Espinoza, D. G., Goycoolea, M., and Helsgaun, K.
(2009). Certification of an optimal tsp tour through
85,900 cities. Operations Research Letters, 37(1):11–
15.
Bidgoli, A. A., Trumble, S., and Rahnamayan, S. (2020).
Discovering numerous strassen’s equivalent equations
using a simple micro multimodal ga: Evolution in ac-
tion. In 2020 IEEE Congress on Evolutionary Com-
putation (CEC), pages 1–8. IEEE.
Chagas, J. B., Blank, J., Wagner, M., Souza, M. J., and
Deb, K. (2021). A non-dominated sorting based
customized random-key genetic algorithm for the bi-
objective traveling thief problem. Journal of Heuris-
tics, 27(3):267–301.
Chagas, J. B. and Wagner, M. (2020). Ants can orienteer
a thief in their robbery. Operations Research Letters,
48(6):708–714.
Chagas, J. B. and Wagner, M. (2022). Efficiently solving
the thief orienteering problem with a max–min ant
colony optimization approach. Optimization Letters,
16(8):2313–2331.
Chen, Y., Xie, Y., Song, L., Chen, F., and Tang, T. (2020).
A survey of accelerator architectures for deep neural
networks. Engineering, 6(3):264–274.
Chow, C. K., Tsui, H. T., and Lee, T. (2001). Optimiza-
tion on unbounded solution space using dynamic ge-
netic algorithms. In IJCNN’01. International Joint
Conference on Neural Networks. Proceedings (Cat.
No.01CH37222), volume 4, pages 2349–2354 vol.4.
Deng, S.-J., Zhou, Y.-R., Min, H.-Q., and Zhu, J.-H. (2010).
Random search algorithm for 2× 2 matrices multi-
plication problem. In Third International Workshop
on Advanced Computational Intelligence, pages 409–
413. IEEE.
Eggermont, J. and van Hemert, J. (2001). Adaptive genetic
programming applied to new and existing simple re-
gression problems. In Miller, J., Tomassini, M., Lanzi,
P., Ryan, C., Tettamanzi, A., and Langdon, W., edi-
tors, GENETIC PROGRAMMING, PROCEEDINGS,
volume 2038 of Lecture Notes in Computer Science,
pages 23–35, HEIDELBERGER PLATZ 3, D-14197
BERLIN, GERMANY. EvoNet, Network Excellence
Evolut Comp; EvoGP; EvoNet Working Grp Genet
Programming, SPRINGER-VERLAG BERLIN. 4th
European Conference on Genetic Programming (Eu-
roGP 2001), COMO, ITALY, APR 18-20, 2001.
Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., R Ruiz,
F. J., Schrittwieser, J., Swirszcz, G., et al. (2022a).
Discovering faster matrix multiplication algorithms
with reinforcement learning. Nature, 610(7930):47–
53.
Fawzi, A., Balog, M., Romera-Paredes, B., Hassabis, D.,
and Kohli, P. (2022b). Discovering novel algorithms
with alphatensor.
Fortnow, L. (2009). The status of the p versus np problem.
Communications of the ACM, 52(9):78–86.
Fortnow, L. (2021). Fifty years of p vs. np and the possi-
bility of the impossible. Communications of the ACM,
65(1):76–85.
Joo, A., Ekart, A., and Neirotti, J. P. (2012). Genetic al-
gorithms for discovery of matrix multiplication meth-
ods. IEEE transactions on evolutionary computation,
16(5):749–751.
Kolen, J. F. and Bruce, P. (2001). Evolutionary search for
matrix multiplication algorithms. In FLAIRS confer-
ence, pages 161–165. Citeseer.
Koza, J. and Rice, J. (1991). Genetic generation of both
the weights and architecture for a neural network. In
IJCNN-91-SEATTLE : International Joint Conference
on Neural Networks, Vols 1 and 2, pages B397–B404,
New York. Int Neural Network Soc, I E E E. Inter-
national Joint Conf on Neural Networks ( IJCNN-91-
SEATTLE ), Seattle, WA, Jul 08-12, 1991.
Koza, J., Yu, J., Keane, M., and Mydlowec, W. (2000). Evo-
lution of a controller with a free variable using genetic
programming. In Poli, R., Banzhaf, W., Langdon, W.,
Miller, J., Nordin, P., and Forgarty, T., editors, Genetic
Programming, Proceedings, volume 1802 of Lecture
Notes in Computer Science, pages 91–105, Heidel-
berger Platz 3, D-14197 Berlin, Germany. Napier
Univ; Marconi Communicat Ltd; Evonet; EvoGP,
Springer-Verlag Berlin. European Conference on Ge-
netic Programming (EuroGP 2000), EDINBURGH,
SCOTLAND, APR 15-16, 2000.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA, USA.
Koza, J. R. (1994). Genetic programming as a means for
programming computers by natural-selection. Statis-
tics and Computing, 4(2):87–112.
Laderman, J. D. (1976). A noncommutative algorithm for
multiplying 3*3 matrices using 23 multiplications.
Larsen, E. S. and McAllister, D. (2001). Fast matrix mul-
tiplies using graphics hardware. In Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing,
pages 55–55.
MacDonald, Z. A. (2016). Investigation of efficient meth-
ods for the determination of strassen-type algorithms
for fast matrix multiplication.
Mohapatra, C. and Ray, B. B. (2022). A survey on large
datasets minimum spanning trees. In International
Symposium on Artificial Intelligence, pages 26–35.
Springer.
Niewenhuis, D., Salhi, A., and van den Berg, D. (2024).
Making hard (er) benchmark functions: Genetic pro-
gramming.
Niewenhuis, D. and van den Berg, D. (2022). Making
hard(er) bechmark test functions. In IJCCI, pages 29–
38.
Niewenhuis, D. and van den Berg, D. (2023). Classical
benchmark functions, but harder (in press). Springer.
Oh, S. and Moon, B.-R. (2009). Automatic reproduction of
a genius algorithm: Strassen’s algorithm revisited by
genetic search. IEEE Transactions on Evolutionary
Computation, 14(2):246–251.
Genetic Programming for 5×5 Matrix Multiplication
277