Head, A., Birkett, M., Fleming, K., Kypridemos, C., &
O’Flaherty, M. (2024). Socioeconomic inequalities in
accumulation of multimorbidity in England from 2019
to 2049: a microsimulation projection study. The
Lancet Public Health, 9(4), e231-e239.
Horvath, T., Leoni, T., Reschenhofer, P., & Spielauer, M.
(2023). Socio-economic inequality and healthcare costs
over the life course–A dynamic microsimulation
approach. Public Health, 219, 124-130.
Jiang, Y., & Li, L. (2024). Projections of functional
dependence among the late middle-aged and older
population from 2018-2048 in China: a dynamic
microsimulation. Global Health Research and Policy,
9(1), 15.
Kashyap, R., & Zagheni, E. (2023). Leveraging Digital and
Computational Demography for Policy Insights. In
Handbook of Computational Social Science for Policy
(pp. 327-344). Cham: Springer International
Publishing.
Keegan, M. (2011). Mandatory superannuation and self-
sufficiency in retirement: an application of the APPSIM
dynamic microsimulation model. Social science
computer review, 29(1), 67-84.
Kennedy, M. C. (2019). Experimental design principles to
choose the number of Monte Carlo replicates for
stochastic ecological models. Ecological Modelling,
394, 11-17.
Khalil, M. A., Fatmi, M. R., & Orvin, M. (2024).
Developing and microsimulating demographic
dynamics for an integrated urban model: a comparison
between logistic regression and machine learning
techniques. Transportation, 1-35.
Klevmarken, A. (2008). Chapter 2 Dynamic
Microsimulation for Policy Analysis: Problems and
Solutions. In Simulating an ageing population: A
microsimulation approach applied to Sweden (pp. 31-
53). Emerald Group Publishing Limited.
Kingston, A., Robinson, L., Booth, H., Knapp, M., Jagger,
C., & Modem Project. (2018). Projections of multi-
morbidity in the older population in England to 2035:
estimates from the Population Ageing and Care
Simulation (PACSim) model. Age and ageing, 47(3),
374-380.
Knoef, M., Alessie, R., & Kalwij, A. (2013). Changes in the
Income Distribution of the D utch Elderly between
1989 and 2020: a Dynamic Microsimulation. Review of
Income and Wealth, 59(3), 460-485.
Kopasker, D., Bronka, P., Thomson, R. M., Khodygo, V.,
Kromydas, T., Meier, P., ... & Katikireddi, S. V. (2024).
Evaluating the influence of taxation and social security
policies on psychological distress: A microsimulation
study of the UK during the COVID-19 economic crisis.
Social Science & Medicine, 351, 116953.
Lappo, S. (2015). Uncertainty in microsimulation. Master's
Thesis, University of Helsinki.
Lawson, T. (2016). How the ageing population contributes
to UK economic activity: A microsimulation analysis.
Scottish Journal of Political Economy, 63(5), 497-518.
Lee, R. D., & Tuljapurkar, S. (1994). Stochastic population
forecasts for the United States: Beyond high, medium,
and low. Journal of the American Statistical
Association, 89(428), 1175-1189.
Lee, J. T., Crettenden, I., Tran, M., Miller, D., Cormack,
M., Cahill, M., ... & Xiang, F. (2024). Methods for
health workforce projection model: systematic review
and recommended good practice reporting guideline.
Human Resources for Health, 22(1), 25.
Lee, R., & Tuljapurkar, S. (1994). Stochastic population
forecasts for the United States: Beyond high, medium,
and low. Journal of the American Statistical
Association, 89(428), 1175–1189.
van Leeuwen, E. (2016). Simulating the expenditures of
Scottish households: a two-step microsimulation
approach to the Cairngorms National Park. In New
Pathways in Microsimulation (pp. 233-248).
Routledge.
Li, Z., Xiong, G., Lv, Y., Ye, P., Liu, X., Tarkoma, S., &
Wang, F. Y. (2024). An Urban Trajectory Data-Driven
Approach for COVID-19 Simulation. IEEE
Li, J., & O'Donoghue, C. (2013). A survey of dynamic
microsimulation models: uses, model structure and
methodology. International Journal of microsimulation,
6(2), 3-55.
Li, J., & O’Donoghue, C. (2016). An overview of binary
alignment methods in microsimulation. New Pathways
in Microsimulation, 233-248.
Lorscheid, I., Heine, B. O., & Meyer, M. (2012). Opening
the ‘black box’of simulations: increased transparency
and effective communication through the systematic
design of experiments. Computational and
Mathematical Organization Theory, 18, 22-62.
Mahadevan, S., & Sarkar, S. (2009). Uncertainty analysis
methods. US Department of Energy, Washington, DC,
USA.
Margetts, H., & Dorobantu, C. (2023). Computational
social science for public policy. In Handbook of
Computational Social Science for Policy (pp. 3-18).
Cham: Springer International Publishing.
Marois, G., & Aktas, A. (2021). Projecting health-ageing
trajectories in Europe using a dynamic microsimulation
model. Scientific reports, 11(1), 1785.
May, P., Normand, C., Matthews, S., Kenny, R. A.,
Romero-Ortuno, R., & Tysinger, B. (2022). Projecting
future health and service use among older people in
Ireland: an overview of a dynamic microsimulation
model in The Irish Longitudinal Study on Ageing
(TILDA). HRB Open Research, 5.
Milne, B., Lay Yee, R., McLay, J. M., Pearson, J., Von
Randow, M., & Davis, P. (2015). Modelling the Early
life-course (MELC): A microsimulation model of child
development in New Zealand.
Münnich, R., Schnell, R., Brenzel, H., Dieckmann, H.,
Dräger, S., Emmenegger, J., ... & Stein, P. (2021). A
population based regional Dynamic microsimulation of
Germany: the MikroSim model. methods, data,
analyses, 15(2), 24.
Nadeau, C., Wong, S. L., Flanagan, W. M., Oderkirk, J.,
Manuel, D., Wall, R., & Tremblay, M. S. (2013).
Development of a population-based microsimulation