Head,  A.,  Birkett,  M.,  Fleming,  K.,  Kypridemos,  C.,  & 
O’Flaherty,  M.  (2024).  Socioeconomic  inequalities  in 
accumulation of multimorbidity in England from 2019 
to  2049:  a  microsimulation  projection  study.  The 
Lancet Public Health, 9(4), e231-e239. 
Horvath, T., Leoni, T., Reschenhofer, P., & Spielauer, M. 
(2023). Socio-economic inequality and healthcare costs 
over  the  life  course–A  dynamic  microsimulation 
approach. Public Health, 219, 124-130. 
Jiang,  Y.,  &  Li,  L.  (2024).  Projections  of  functional 
dependence  among  the  late  middle-aged  and  older 
population  from  2018-2048  in  China:  a  dynamic 
microsimulation.  Global  Health  Research  and  Policy, 
9(1), 15.  
Kashyap, R., & Zagheni, E. (2023). Leveraging Digital and 
Computational  Demography  for  Policy  Insights.  In 
Handbook of Computational Social Science for Policy 
(pp.  327-344).  Cham:  Springer  International 
Publishing.  
Keegan,  M.  (2011).  Mandatory  superannuation  and  self-
sufficiency in retirement: an application of the APPSIM 
dynamic  microsimulation  model.  Social  science 
computer review, 29(1), 67-84. 
Kennedy, M. C. (2019). Experimental design principles to 
choose  the  number  of  Monte  Carlo  replicates  for 
stochastic  ecological  models.  Ecological  Modelling, 
394, 11-17. 
Khalil,  M.  A.,  Fatmi,  M.  R.,  &  Orvin,  M.  (2024). 
Developing  and  microsimulating  demographic 
dynamics for an integrated urban model: a comparison 
between  logistic  regression  and  machine  learning 
techniques. Transportation, 1-35. 
Klevmarken,  A.  (2008).  Chapter  2  Dynamic 
Microsimulation  for  Policy  Analysis:  Problems  and 
Solutions.  In  Simulating  an  ageing  population:  A 
microsimulation approach applied to  Sweden (pp. 31-
53). Emerald Group Publishing Limited. 
Kingston, A., Robinson, L., Booth, H., Knapp, M., Jagger, 
C.,  &  Modem  Project.  (2018).  Projections  of  multi-
morbidity in the older population in England to 2035: 
estimates  from  the  Population  Ageing  and  Care 
Simulation  (PACSim)  model.  Age  and  ageing,  47(3), 
374-380. 
Knoef, M., Alessie, R., & Kalwij, A. (2013). Changes in the 
Income  Distribution  of  the  D  utch  Elderly  between 
1989 and 2020: a Dynamic Microsimulation. Review of 
Income and Wealth, 59(3), 460-485. 
Kopasker, D., Bronka, P., Thomson, R. M., Khodygo, V., 
Kromydas, T., Meier, P., ... & Katikireddi, S. V. (2024). 
Evaluating the influence of taxation and social security 
policies  on  psychological  distress: A  microsimulation 
study of the UK during the COVID-19 economic crisis. 
Social Science & Medicine, 351, 116953. 
Lappo, S. (2015). Uncertainty in microsimulation. Master's 
Thesis, University of Helsinki.  
Lawson, T. (2016). How the ageing population contributes 
to UK economic activity: A microsimulation analysis. 
Scottish Journal of Political Economy, 63(5), 497-518. 
Lee, R. D., & Tuljapurkar, S. (1994). Stochastic population 
forecasts for the United States: Beyond high, medium, 
and  low.  Journal  of  the  American  Statistical 
Association, 89(428), 1175-1189. 
Lee, J. T.,  Crettenden, I., Tran, M., Miller, D., Cormack, 
M.,  Cahill,  M.,  ...  &  Xiang,  F.  (2024).  Methods  for 
health workforce projection  model: systematic review 
and  recommended  good  practice  reporting  guideline. 
Human Resources for Health, 22(1), 25.  
Lee,  R.,  &  Tuljapurkar,  S.  (1994).  Stochastic  population 
forecasts for the United States: Beyond high, medium, 
and  low.  Journal  of  the  American  Statistical 
Association, 89(428), 1175–1189.  
van  Leeuwen,  E.  (2016).  Simulating  the  expenditures  of 
Scottish  households:  a  two-step  microsimulation 
approach  to  the  Cairngorms  National  Park.  In  New 
Pathways  in  Microsimulation  (pp.  233-248). 
Routledge. 
Li, Z., Xiong, G., Lv, Y., Ye, P., Liu, X., Tarkoma, S., & 
Wang, F. Y. (2024). An Urban Trajectory Data-Driven 
Approach for COVID-19 Simulation. IEEE  
Li,  J.,  &  O'Donoghue,  C.  (2013).  A  survey  of  dynamic 
microsimulation  models:  uses,  model  structure  and 
methodology. International Journal of microsimulation, 
6(2), 3-55.  
Li, J.,  & O’Donoghue,  C.  (2016). An  overview of  binary 
alignment methods in microsimulation. New Pathways 
in Microsimulation, 233-248. 
Lorscheid, I., Heine, B. O., & Meyer, M. (2012). Opening 
the  ‘black  box’of  simulations:  increased  transparency 
and  effective  communication  through  the  systematic 
design  of  experiments.  Computational  and 
Mathematical Organization Theory, 18, 22-62. 
Mahadevan, S., & Sarkar, S. (2009). Uncertainty analysis 
methods. US Department of Energy, Washington, DC, 
USA. 
Margetts,  H.,  &  Dorobantu,  C.  (2023).  Computational 
social  science  for  public  policy.  In  Handbook  of 
Computational  Social  Science  for  Policy  (pp.  3-18). 
Cham: Springer International Publishing. 
Marois, G.,  &  Aktas,  A. (2021). Projecting  health-ageing 
trajectories in Europe using a dynamic microsimulation 
model. Scientific reports, 11(1), 1785. 
May, P., Normand, C., Matthews, S., Kenny, R. A., 
Romero-Ortuno, R., & Tysinger, B. (2022). Projecting 
future  health  and  service  use  among  older  people  in 
Ireland:  an  overview  of  a  dynamic  microsimulation 
model  in  The  Irish  Longitudinal  Study  on  Ageing 
(TILDA). HRB Open Research, 5. 
Milne, B., Lay Yee, R., McLay, J. M., Pearson, J., Von 
Randow, M., & Davis, P. (2015). Modelling the Early 
life-course (MELC): A microsimulation model of child 
development in New Zealand. 
Münnich,  R.,  Schnell,  R.,  Brenzel,  H.,  Dieckmann,  H., 
Dräger, S., Emmenegger, J.,  ...  &  Stein, P.  (2021). A 
population based regional Dynamic microsimulation of 
Germany:  the  MikroSim  model.  methods,  data, 
analyses, 15(2), 24. 
Nadeau, C.,  Wong,  S. L.,  Flanagan, W.  M., Oderkirk,  J., 
Manuel,  D.,  Wall,  R.,  &  Tremblay,  M.  S.  (2013). 
Development  of  a  population-based  microsimulation