tion for medical examination using a UR3e manipula-
tor. Proceedings of International Conference on Arti-
ficial Life and Robotics, 29:308–311.
Barricelli, B. R., Casiraghi, E., and Fogli, D. (2019). A
survey on digital twin: Definitions, characteristics,
applications, and design implications. IEEE access,
7:167653–167671.
Glaessgen, E. and Stargel, D. (2012). The digital twin
paradigm for future nasa and us air force vehi-
cles. In 53rd AIAA/ASME/ASCE/AHS/ASC structures,
structural dynamics and materials conference 20th
AIAA/ASME/AHS adaptive structures conference 14th
AIAA, page 1818.
Jones, D., Snider, C., Nassehi, A., Yon, J., and Hicks, B.
(2020). Characterising the digital twin: A systematic
literature review. CIRP journal of manufacturing sci-
ence and technology, 29:36–52.
Kamble, S. S., Gunasekaran, A., and Gawankar, S. A.
(2018). Sustainable industry 4.0 framework: A sys-
tematic literature review identifying the current trends
and future perspectives. Process safety and environ-
mental protection, 117:408–425.
Khan, A. and Turowski, K. (2016). A survey of current
challenges in manufacturing industry and preparation
for industry 4.0. In Proceedings of the First Interna-
tional Scientific Conference “Intelligent Information
Technologies for Industry”(IITI’16) Volume 1, pages
15–26. Springer.
Konstantinov, S., Hansen, J. D. O., Assad, F., Ahmad, B.,
Vera, D. A., and Harrison, R. (2023). An analysis
of the available virtual engineering tools for building
manufacturing systems digital twin. Procedia CIRP,
116:570–575.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., and Sihn,
W. (2018). Digital twin in manufacturing: A cat-
egorical literature review and classification. Ifac-
PapersOnline, 51(11):1016–1022.
Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., and Xu,
X. (2020). Digital twin-driven smart manufacturing:
Connotation, reference model, applications and re-
search issues. Robotics and computer-integrated man-
ufacturing, 61:101837.
McGinnis, L., Buckley, S., and Barenji, A. V. (2021). De-
signing and implementing operational controllers for
a robotic tote consolidation cell simulation. In 2021
Winter Simulation Conference (WSC), pages 1–12.
IEEE.
Mustafin, M., Chebotareva, E., Li, H., and Magid, E.
(2023). Experimental validation of an interface for
a human-robot interaction within a collaborative task.
In Ronzhin, A., Sadigov, A., and Meshcheryakov, R.,
editors, Interactive Collaborative Robotics, pages 23–
35, Cham. Springer Nature Switzerland.
Negri, E., Fumagalli, L., and Macchi, M. (2017). A re-
view of the roles of digital twin in cps-based produc-
tion systems. Procedia manufacturing, 11:939–948.
Schleich, B., Anwer, N., Mathieu, L., and Wartzack, S.
(2017). Shaping the digital twin for design and pro-
duction engineering. CIRP annals, 66(1):141–144.
Schluse, M., Priggemeyer, M., Atorf, L., and Rossmann, J.
(2018). Experimentable digital twins—streamlining
simulation-based systems engineering for industry
4.0. IEEE Transactions on industrial informatics,
14(4):1722–1731.
S
¨
oderberg, R., W
¨
armefjord, K., Carlson, J. S., and Lind-
kvist, L. (2017). Toward a digital twin for real-
time geometry assurance in individualized production.
CIRP annals, 66(1):137–140.
Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., and Sui,
F. (2018). Digital twin-driven product design, man-
ufacturing and service with big data. The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 94:3563–3576.
Universal Robot (2024). Universal robot, model
UR3e. https://www.universal-robots.com/products/
ur3-robot/. Accessed: 2024/06/18.
Wang, Y., Ma, H.-S., Yang, J.-H., and Wang, K.-S. (2017).
Industry 4.0: a way from mass customization to mass
personalization production. Advances in manufactur-
ing, 5:311–320.
Wolniakowski, A., Quintana, J. J., Diaz, M., Miatliuk, K.,
and Ferrer, M. A. (2021). Towards human-like kine-
matics in industrial robotic arms: a case study on a ur3
robot. In 2021 International Carnahan Conference on
Security Technology (ICCST), pages 1–5.
Yi, S., Li, C., and Li, Q. (2015). A survey of fog computing:
Concepts, applications and issues. In Proceedings of
the 2015 Workshop on Mobile Big Data, pages 37–42.
ACM.
Zhao, R., Zou, G., Su, Q., Zou, S., Deng, W., Yu, A., and
Zhang, H. (2022). Digital twins-based production line
design and simulation optimization of large-scale mo-
bile phone assembly workshop. Machines, 10(5):367.
Setting up a Digital Twin for Real-Time Remote Monitoring of a Cyber-Physical System
417