https://agenciagov.ebc.com.br/noticias/202403/gov-
br-e-a-pagina-de-governo-mais-acessada-do-mundo.
Accessed: 27 June 2024.
Guedes, L. and J
´
unior, M. O. (2024). Artificial intelligence
adoption in public organizations: a case study. Fu-
ture Studies Research Journal: Trends and Strategies,
16(1):e860–e860.
Jevinger,
˚
A., Zhao, C., Persson, J. A., and Davidsson,
P. (2024). Artificial intelligence for improving pub-
lic transport: a mapping study. Public Transport,
16(1):99–158.
Kitsios, F., Kamariotou, M., and Mavromatis, A. (2023).
Drivers and outcomes of digital transformation: The
case of public sector services. Information, 14(1):43.
Knapp, J., Zeratsky, J., and Kowitz, B. (2016). Sprint: o
m
´
etodo usado no Google para testar e aplicar novas
ideias em apenas cinco dias. Editora Intr
´
ınseca Ltda.
Kubota, L. C. and Rosa, M. B. (2024). Intelig
ˆ
encia
artificial no brasil: Adoc¸
˜
ao, produc¸
˜
ao cient
´
ıfica
e regulamentac¸
˜
ao. digitalizac¸
˜
ao e tecnologias da
informac¸
˜
ao e comunicac¸
˜
ao. Digitalizac¸
˜
ao e tecnolo-
gias da informac¸
˜
ao e comunicac¸
˜
ao: oportunidades e
desafios para o Brasil. Rio de Janeiro: Ipea.
Kutyauripo, I., Rushambwa, M., and Chiwazi, L. (2023).
Artificial intelligence applications in the agrifood sec-
tors. Journal of Agriculture and Food Research,
11:100502.
Larusdottir, M., Roto, V., and Cajander, A. (2021). Intro-
duction to user-centred design sprint. In Ardito, C.
e. a., editor, Human-Computer Interaction – INTER-
ACT 2021, volume 12936 of Lecture Notes in Com-
puter Science, pages 283–293. Springer, Cham.
Leal, J. E. (2020). Ahp-express: A simplified version of the
analytical hierarchy process method. MethodsX, 7.
Lemes, M. M. and Lemos, A. N. L. E. (2020). O uso
da intelig
ˆ
encia artificial na sa
´
ude pela administrac¸
˜
ao
p
´
ublica brasileira. Cadernos Ibero-Americanos de Di-
reito Sanit
´
ario, 9(3):166–182.
Lewis, P. and et al. (2020). Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. In Advances in
Neural Information Processing Systems, volume 33,
pages 9459–9474.
Maragno, G., Tangi, L., Gastaldi, L., and Benedetti, M.
(2023). Exploring the factors, affordances and con-
straints outlining the implementation of artificial in-
telligence in public sector organizations. International
Journal of Information Management, 73:102686.
Mendonc¸a de S
´
a Ara
´
ujo, C. M., Miranda Santos, I.,
Dias Canedo, E., and Favacho de Ara
´
ujo, A. P. (2019).
Design thinking versus design sprint: A comparative
study. In Marcus, A. and Wang, W., editors, Design,
User Experience, and Usability. Design Philosophy
and Theory, volume 11583 of Lecture Notes in Com-
puter Science, pages 335–344. Springer, Cham.
Neumann, O., Guirguis, K., and Steiner, R. (2024). Explor-
ing artificial intelligence adoption in public organiza-
tions: a comparative case study. Public Management
Review, 26(1):114–141.
Nonato, S. D. O., de Souza Figueiredo, S. d. S.,
de Melo Alves, C. A., and Dias, C. N. (2024).
Cooperac¸
˜
ao interorganizacional em planos es-
trat
´
egicos de intelig
ˆ
encia artificial: uma an
´
alise
comparativa. Future Studies Research Journal:
Trends and Strategies, 16(1):e838–e838.
OECD.AI (2022). Ai use case in the public sector. Re-
trieved on 29-Jun-2024.
Robertson, S. I. (2016). Problem Solving: Perspectives from
Cognition and Neuroscience. Psychology Press, 2nd
edition.
Rocha, C. A. A., Weigang, L., Dib, M. V. P., Faria, A. V. A.,
Cajueiro, D. O., de Melo, M. K., and Celestino, V.
R. R. (2022). Leveraging transfer learning for long
text classification with limited data. In International
Conference on Web Information Systems and Tech-
nologies, pages 98–120. Springer.
Saaty, R. W. (1987). The analytic hierarchy process—what
it is and how it is used. Mathematical Modelling,
9(5):161–176.
Saaty, T. L. (1977). A scaling method for priorities in hier-
archical structures. Journal of Mathematical Psychol-
ogy, 15.
Saaty, T. L. (2006). Rank from comparisons and from rat-
ings in the analytic hierarchy/network processes. Eu-
ropean Journal of Operational Research, 168(2):557–
570.
Saeidnia, H. R., Hosseini, E., Abdoli, S., and Ausloos, M.
(2024). Unleashing the power of ai: a systematic re-
view of cutting-edge techniques in ai-enhanced scien-
tometrics, webometrics and bibliometrics. Library Hi
Tech.
Samoili, S., Cobo, M. L., G
´
omez, E., De Prato, G.,
Mart
´
ınez-Plumed, F., and Delipetrev, B. (2020). Ai
watch. defining artificial intelligence. towards an op-
erational definition and taxonomy of artificial intelli-
gence.
Scutella, M., Plewa, C., and Reaiche, C. (2024). Vir-
tual agents in the public service: examining citizens’
value-in-use. Public Management Review, 26(1):73–
88.
Straub, V. J., Morgan, D., Bright, J., and Margetts, H.
(2023). Artificial intelligence in government: Con-
cepts, standards, and a unified framework. Govern-
ment Information Quarterly, 40(4):101881.
Wang, C., Han, B., Patel, B., and Rudin, C. (2023). In pur-
suit of interpretable, fair and accurate machine learn-
ing for criminal recidivism prediction. Journal of
Quantitative Criminology, 39(2):519–581.
Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., et al. (2023).
The rise and potential of large language model based
agents: A survey. arXiv preprint arXiv:2309.07864.
Yu, K.-H., Beam, A. L., and Kohane, I. S. (2018). Artifi-
cial intelligence in healthcare. Nature biomedical en-
gineering, 2(10):719–731.
Zhang, T. and et al. (2024). Raft: Adapting lan-
guage model to domain specific rag. arXiv preprint
arXiv:2403.10131.
WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies
100