Aharon, N., Orfaig, R., and Bobrovsky, B. (2022). Bot-sort:
Robust associations multi-pedestrian tracking. CoRR,
abs/2206.14651.
Angles, R. (2018). The property graph database model. In
AMW.
Atrey, P. K., Hossain, M. A., El Saddik, A., and Kankan-
halli, M. S. (2010). Multimodal fusion for multimedia
analysis: a survey. Multimedia Systems, 16(6):345–
379.
Barbieri, D. F., Braga, D., Ceri, S., VALLE, E. D., and
Grossniklaus, M. (2010). C-sparql: a continuous
query language for rdf data streams. International
Journal of Semantic Computing, 4(01):3–25.
Berenstein, A., Magarinos, M. P., Chernomoretz, A., and
Aguero, F. (2016). A multilayer network approach
for guiding drug repositioning in neglected diseases.
PLOS.
Billah, H. and Chakravarthy, S. (2024). Video situation
monitoring using continuous queries. In DEXA,2024,
volume 14911 of LNCS, pages 125–141. Springer.
Billah, H., Santra, A., and Chakravarthy, S. (2024). Lever-
aging video situation monitoring in assisted living en-
vironment. In PETRA, 2024, pages 307–315. ACM.
Boden, B., G
¨
unnemann, S., Hoffmann, H., and Seidl, T.
(2012). Mining coherent subgraphs in multi-layer
graphs with edge labels. KDD ’12, pages 1258–1266.
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor,
J. (2008). Freebase: a collaboratively created graph
database for structuring human knowledge. SIGMOD
’08, pages 1247–1250, New York, NY, USA. ACM.
Chen, P. P.-S. (1976). The entity-relationship
model—toward a unified view of data. ACM
transactions on database systems (TODS), 1(1):9–36.
Das, S., Santra, A., Bodra, J., and Chakravarthy, S. (2020).
Query processing on large graphs: Approaches to
scalability and response time trade offs. Data Knowl.
Eng., 126:101736.
De Domenico, M., Sol
´
e-Ribalta, A., G
´
omez, S., and Are-
nas, A. (2014). Navigability of interconnected net-
works under random failures. Proc. of Ntl. Acad. of
Sciences.
Domenico, M. D., Nicosia, V., Arenas, A., and Latora, V.
(2014). Layer aggregation and reducibility of multi-
layer interconnected networks. CoRR, abs/1405.0425.
Holder, L. B., Cook, D. J., and Djoko, S. (1994). Substuc-
ture Discovery in the SUBDUE System. In Knowl-
edge Discovery and Data Mining, pages 169–180.
Ji, J., Krishna, R., Fei-Fei, L., and Niebles, J. C. (2020).
Action genome: Actions as compositions of spatio-
temporal scene graphs. In CVPR, pages 10236–10247.
Kim, J. and Lee, J. (2015). Community detection in multi-
layer graphs: A survey. SIGMOD Record, 44(3):37–
48.
Kivel
¨
a, M., Arenas, A., Barthelemy, M., Gleeson, J. P.,
Moreno, Y., and Porter, M. A. (2013). Multilayer net-
works. CoRR, abs/1309.7233.
Komar, K. S., Santra, A., Bhowmick, S., and Chakravarthy,
S. (2020). Eer→mln: EER approach for modeling,
mapping, and analyzing complex data using multi-
layer networks (mlns). In ER 2020, pages 555–572.
Magnani, M., Hanteer, O., Interdonato, R., Rossi, L., and
Tagarelli, A. (2021). Community detection in multi-
plex networks. ACM CS., 54(3):48:1–48:35.
Melamed, D. (2014). Community structures in bipartite
networks: A dual-projection approach. PloS one,
9(5):e97823.
Otter, D. W., Medina, J. R., and Kalita, J. K. (2020). A sur-
vey of the usages of deep learning for natural language
processing. TNNLS, 32(2):604–624.
Ou, Y., Mi, L., and Chen, Z. (2022). Object-Relation Rea-
soning Graph for Action Recognition. In CVPR, pages
20133–20142.
Padmanabhan, S. and Chakravarthy, S. (2009). HDB-
Subdue: A Scalable Approach to Graph Mining. In
DaWaK, pages 325–338.
Pavel, H. R., Roy, A., Santra, A., and Chakravarthy, S.
(2023). Closeness centrality detection in homoge-
neous multilayer networks. In IC3K 2023, KDIR.
Roy-Hubara, N., Rokach, L., Shapira, B., and Shoval, P.
(2017). Modeling graph database schema. IT Profes-
sional, 19(6):34–43.
Samant, K., Memeti, E., Santra, A., Karim, E., and
Chakravarthy, S. (2021). Cowiz: Interactive covid-19
visualization based on multilayer network analysis. In
ICDE 2021, pages 2665–2668. IEEE.
Santra, A., Bhowmick, S., and Chakravarthy, S. (2017). Ef-
ficient community re-creation in multilayer networks
using boolean operations. In ICCS 2017, pages 58–67.
Santra, A., Komar, K., Bhowmick, S., and Chakravarthy,
S. (2022). From base data to knowledge discovery–a
life cycle approach–using multilayer networks. DKE,
141:102058.
Shi, C., Li, Y., Zhang, J., Sun, Y., and Philip, S. Y. (2017).
A survey of heterogeneous information network anal-
ysis. IEEE Trans. Knowl. Data Eng., 29(1):17–37.
Sol
´
e-Ribalta, A., De Domenico, M., G
´
omez, S., and Are-
nas, A. (2014). Centrality rankings in multiplex net-
works. In Procds. of 2014 ACM conf. on Web science,
pages 149–155. ACM.
Sun, Y. and Han, J. (2013). Mining heterogeneous informa-
tion networks: a structural analysis approach. ACM
SIGKDD Explorations Newsletter, 14(2):20–28.
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J.,
and Ding, G. (2024). Yolov10: Real-time end-to-end
object detection. CoRR, abs/2405.14458.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. (2020).
Deep high-resolution representation learning for vi-
sual recognition. PAMI, 43(10):3349–3364.
Yadav, P., Salwala, D., Das, D. P., and Curry, E.
(2020). Knowledge Graph Driven Approach to Rep-
resent Video Streams for Spatiotemporal Event Pat-
tern Matching in Complex Event Processing. IJSC,
14(03):423–455.
Yan, X. and Han, J. (2002). gSpan: Graph-Based Substruc-
ture Pattern Mining. In IEEE International Confer-
ence on Data Mining, pages 721–724.
Zhan, Q., Zhang, J., Wang, S., Philip, S. Y., and Xie,
J. (2015). Influence maximization across partially
aligned heterogenous social networks. In PAKDD (1),
pages 58–69.
Zhang, E., Daum, M., He, D., Haynes, B., Krishna, R.,
and Balazinska, M. (2023). Equi-vocal: Synthesizing
queries for compositional video events from limited
user interactions. VLDB, 16(11):2714–2727.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
390