Herzen, J., L
˜
A¤ssig, F., Piazzetta, S. G., Neuer, T.,
Tafti, L., Raille, G., Pottelbergh, T. V., Pasieka,
M., Skrodzki, A., Huguenin, N., Dumonal, M.,
Ko
˚
A
>
cisz, J., Bader, D., Gusset, F., Benheddi,
M., Williamson, C., Kosinski, M., Petrik, M.,
and Grosch, G. (2022). Darts: Time series
made easy in python. https://unit8.com/resources/
darts-time-series-made-easy-in-python/. Accessed:
2024-07-04.
Hewage, P., Behera, A., Trovati, M., Pereira, E., Ghahre-
mani, M., Palmieri, F., and Liu, Y. (2020). Tempo-
ral convolutional neural (tcn) network for an effec-
tive weather forecasting using time-series data from
the local weather station. Soft Computing, 24:16453–
16482.
Hyndman, R. J., Khandakar, Y., and Khandakar, Y. (2008).
Automatic time series forecasting: the forecast pack-
age for r. Journal of statistical software, 27:1–22.
Khargharia, H. S., Shakya, S., Sharif, S., Ainslie, R., and
Owusu, G. (2022). On predicting the work load for
service contractors. In Artificial Intelligence XXXIX:
42nd SGAI International Conference on Artificial In-
telligence, AI 2022, Cambridge, UK, December 13–
15, 2022, Proceedings, pages 223–237. Springer.
Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo,
J. (2021). Reversible instance normalization for accu-
rate time-series forecasting against distribution shift.
In International Conference on Learning Representa-
tions.
Lim, B., Arık, S.
¨
O., Loeff, N., and Pfister, T. (2021).
Temporal fusion transformers for interpretable multi-
horizon time series forecasting. International Journal
of Forecasting, 37(4):1748–1764.
Liu, S., Ji, H., and Wang, M. C. (2019). Nonpooling convo-
lutional neural network forecasting for seasonal time
series with trends. IEEE transactions on neural net-
works and learning systems, 31(8):2879–2888.
Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L., and
Long, M. (2023). itransformer: Inverted transformers
are effective for time series forecasting. arXiv preprint
arXiv:2310.06625.
L
¨
oning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines,
J., and Kir
´
aly, F. J. (2019). sktime, a library for time
series analysis in python. http://www.sktime.net/en/
latest/. Accessed: 2023-06-14.
Mahajan, S., Sharma, M., and Gupta, A. (2020). Arima
modelling for forecasting of rice production: A case
study of india. Agricultural Science Digest-A Re-
search Journal, 40(4):404–407.
Mahalakshmi, G., Sridevi, S., and Rajaram, S. (2016). A
survey on forecasting of time series data. In 2016
International Conference on Computing Technolo-
gies and Intelligent Data Engineering (ICCTIDE’16),
pages 1–8. IEEE.
Mahmoud, A. and Mohammed, A. (2021). A survey on
deep learning for time-series forecasting. Machine
Learning and Big Data Analytics Paradigms: Anal-
ysis, Applications and Challenges, pages 365–392.
Mio, C., Shakya, S., Khargharia, H., Ruta, D., Den-
gur, S., Al Shamisi, A. A. S., and Alawneh, A.
(2023). Strengthening food security: A comparison
of food import forecasting models. In Proceedings
of the IEEE/ACM 10th International Conference on
Big Data Computing, Applications and Technologies,
pages 1–6.
Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y.
(2019). N-beats: Neural basis expansion analysis for
interpretable time series forecasting. arXiv preprint
arXiv:1905.10437.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2023).
Pytorch, a python library for neural networks. https:
//pytorch.org/. Accessed: 2023-11-24.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). scikit-learn,
machine learning in python. https://scikit-learn.org/
stable/. Accessed: 2023-06-14.
Rathod, S., Singh, K., Patil, S., Naik, R. H., Ray, M., and
Meena, V. S. (2018). Modeling and forecasting of
oilseed production of india through artificial intelli-
gence techniques. Indian J. Agric. Sci, 88(1):22–27.
Sharma, P. K., Dwivedi, S., Ali, L., and Arora, R. (2018).
Forecasting maize production in india using arima
model. Agro-Economist, 5(1):1–6.
Shaw, D. J. (1996). Rome declaration on world food se-
curity. https://www.fao.org/3/w3613e/w3613e00.htm.
Accessed: 2023-06-14.
Sheng, Y. and Song, L. (2019). Agricultural production and
food consumption in china: A long-term projection.
China Economic Review, 53:15–29.
Song, F., Liu, J., Zhang, T., Guo, J., Tian, S., and Xiong, D.
(2020). The grey forecasting model for the medium-
and long-term load forecasting. In Journal of Physics:
Conference Series, volume 1654, page 012104. IOP
Publishing.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J.,
and Sun, L. (2022). Transformers in time series: A
survey. arXiv preprint arXiv:2202.07125.
Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are
transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intel-
ligence, volume 37, pages 11121–11128.
A Comparison of Advanced Machine Learning Models for Food Import Forecasting
575