FlowJo (2024). Flowjo data analysis software. https://ww
w.flowjo.com/solutions/flowjo. February 21, 2024.
Garc
´
ıa, S., Luengo, J., and Herrera, F. (2015). Data prepro-
cessing in data mining, volume 72. Springer.
G
´
eron, A. (2017). Hands-On Machine Learning with Scikit-
Learn and TensorFlow: Concepts, Tools, and Tech-
niques to Build Intelligent Systems. O’Reilly Media,
Sebastopol, CA.
Ghafari, R., Azar, A. S., Ghafari, A., Aghdam, F. M.,
Valizadeh, M., Khalili, N., and Hatamkhani, S.
(2023). Prediction of the fatal acute complications
of myocardial infarction via machine learning algo-
rithms. The Journal of Tehran University Heart Cen-
ter, 18(4):278–287.
Izonin, I., Ilchyshyn, B., Tkachenko, R., Gregu
ˇ
s, M.,
Shakhovska, N., and Strauss, C. (2022). Towards data
normalization task for the efficient mining of medical
data. In 2022 12th International Conference on Ad-
vanced Computer Information Technologies (ACIT),
pages 480–484.
Jayalakshmi, T. and Santhakumaran, A. (2011). Statistical
normalization and back propagation for classification.
International Journal of Computer Theory and Engi-
neering, 3(1):1793–8201.
Khera, R., Haimovich, J., Hurley, N. C., McNamara, R.,
Spertus, J. A., Desai, N., Rumsfeld, J. S., Masoudi,
F. A., Huang, C., Normand, S.-L., Mortazavi, B. J.,
and Krumholz, H. M. (2021). Use of Machine Learn-
ing Models to Predict Death After Acute Myocardial
Infarction. JAMA Cardiology, 6(6):633–641.
Khushi, M., Shaukat, K., Alam, T. M., Hameed, I. A., Ud-
din, S., Luo, S., Yang, X., and Reyes, M. C. (2021). A
comparative performance analysis of data resampling
methods on imbalance medical data. IEEE Access,
9:109960–109975.
Li, X., Shang, C., Xu, C., Wang, Y., Xu, J., and Zhou,
Q. (2023). Development and comparison of machine
learning-based models for predicting heart failure af-
ter acute myocardial infarction. BMC Medical Infor-
matics and Decision Making, 23(1):165.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Mohammad, M. A., Olesen, K. K. W., Koul, S., Gale, C. P.,
Rylance, R., Jernberg, T., Baron, T., Spaak, J., James,
S., Lindahl, B., Maeng, M., and Erlinge, D. (2022).
Development and validation of an artificial neural net-
work algorithm to predict mortality and admission to
hospital for heart failure after myocardial infarction: a
nationwide population-based study. The Lancet. Dig-
ital health, 4(1):e37–e45.
Mpanya, D., Celik, T., Klug, E., and Ntsinjana, H. (2021).
Predicting mortality and hospitalization in heart fail-
ure using machine learning: A systematic literature
review. IJC Heart & Vasculature, 34:100773.
Murphy, S. L., Kochanek, K. D., Xu, J., and Arias, E.
(2021). Mortality in the united states, 2020. National
Center for Health Statistics (NCHS), Data Brief Num.
427.
Newaz, A., Mohosheu, M. S., and Al Noman, M. A.
(2023). Predicting complications of myocardial in-
farction within several hours of hospitalization using
data mining techniques. Informatics in Medicine Un-
locked, 42:101361.
Oliveira, M., Seringa, J., Pinto, F. J., Henriques, R., and
Magalh
˜
aes, T. (2023). Machine learning prediction of
mortality in acute myocardial infarction. BMC Medi-
cal Informatics and Decision Making, 23(1):1–16.
Piros, P., Ferenci, T., Fleiner, R., Andr
´
eka, P., Fujita, H.,
F
˝
oz
˝
o, L., Kov
´
acs, L., and J
´
anosi, A. (2019). Compar-
ing machine learning and regression models for mor-
tality prediction based on the hungarian myocardial
infarction registry. Knowledge-Based Systems, 179:1–
7.
PyTorch (2024). torch.nn.CrossEntropyLoss. https://pytorc
h.org/docs/stable/generated/torch.nn.CrossEntropyL
oss.html. Febarary 20, 2024.
Qing Ye, Jie Zhang, L. M. (2020). Predictors of all-
cause 1-year mortality in myocardial infarction pa-
tients. Medicine, 99(23).
Reddy, K., Khaliq, A., and Henning, R. (2015). Recent
advances in the diagnosis and treatment of acute my-
ocardial infarction. World Journal of Cardiology,
7(5):243–276.
Saxena, A., Kumar, M., Tyagi, P., Sikarwar, K., and Pathak,
A. (2022). Machine learning based selection of my-
ocardial complications to predict heart attack. In 2022
IEEE 9th Uttar Pradesh Section International Con-
ference on Electrical, Electronics and Computer En-
gineering (UPCON), pages 1–4. IEEE.
Shantsila, E., Ghattas, A., Griffiths, H., and Lip, G.
(2019). Mon2 predicts poor outcome in st-elevation
myocardial infarction. Journal of internal medicine,
285(3):301–316.
Shantsila, E., Tapp, L. D., Wrigley, B. J., Montoro-Garcia,
S., and Lip, G. Y. (2013). Cxcr4 positive and angio-
genic monocytes in myocardial infarction. Thrombo-
sis and haemostasis, 109(02):255–262.
Shantsila, E., Wrigley, B., Tapp, L., Apostolakis, S.,
Montoro-Garcia, S., Drayson, M., and Lip, G. (2011).
Immunophenotypic characterization of human mono-
cyte subsets: possible implications for cardiovascular
disease pathophysiology. Journal of Thrombosis and
Haemostasis, 9(5):1056–1066.
Singh, D. and Singh, B. (2020). Investigating the impact
of data normalization on classification performance.
Applied Soft Computing, 97:105524.
Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L.,
Chaitman, B. R., and White, H. D. (2012). Third uni-
versal definition of myocardial infarction. circulation,
126(16):2020–2035.
Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., and Shen,
F. (2022). Image data augmentation for deep learning:
A survey. arXiv preprint arXiv:2204.08610.
Zhang, G. (2000). Neural networks for classification: a sur-
vey. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), 30(4):451–
462.
Predicting Post Myocardial Infarction Complication: A Study Using Dual-Modality and Imbalanced Flow Cytometry Data
89