MobiCom ’20, New York, NY, USA. Association for
Computing Machinery.
Benet, G., Blanes, F., Sim
´
o, J. E., and P
´
erez, P. (2002).
Using infrared sensors for distance measurement in
mobile robots. Robotics and Autonomous Systems,
40(4):255–266.
Blackmore, S., Stout, B. A., Wang, M., Runov, B. I., and
Stafford, J. V. (2005). Robotic agriculture - the future
of agricultural mechanisation? In In Proceedings of
European Conference on Precision Agriculture 2005,
pages 621–628.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In kdd, volume 96,
pages 226–231.
Ivanov, P., Raitoharju, M., and Pich
´
e, R. (2018). Kalman-
Type Filters and Smoothers for Pedestrian Dead
Reckoning. In 2018 International Conference on In-
door Positioning and Indoor Navigation (IPIN), pages
206–212.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of Basic Engineer-
ing, 82(1):35–45.
Kia, G., Ruotsalainen, L., and Talvitie, J. (2022). Toward
Accurate Indoor Positioning: An RSS-Based Fusion
of UWB and Machine-Learning-Enhanced WiFi. Sen-
sors, 22(9).
Leonard, J. J. and Durrant-Whyte, H. (1991). Mobile robot
localization by tracking geometric beacons. IEEE
Transactions on Robotics and Automation, 7(3):376–
382.
Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and
Woodall, W. (2022). Robot Operating System 2:
Design, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074.
Mostofi, N., Elhabiby, M., and El-Sheimy, N. (2014). In-
door localization and mapping using camera and iner-
tial measurement unit (IMU). In 2014 IEEE/ION Po-
sition, Location and Navigation Symposium-PLANS
2014, pages 1329–1335. IEEE.
Oliveira, M. I. and Marc¸al, A. R. (2023). Clustering LiDAR
Data with K-means and DBSCAN. In ICPRAM, pages
822–831.
Perafan-Lopez, J. C., Ferrer-Gregory, V. L., Nieto-
Londo
˜
no, C., and Sierra-P
´
erez, J. (2022). Perfor-
mance Analysis and Architecture of a Clustering Hy-
brid Algorithm Called FA+GA-DBSCAN Using Arti-
ficial Datasets. Entropy, 24(7):875.
Petrovic, S. (2006). A comparison between the silhouette
index and the davies-bouldin index in labelling ids
clusters. In Proceedings of the 11th Nordic workshop
of secure IT systems, volume 2006, pages 53–64. Cite-
seer.
Rousseeuw, P. (1987). Rousseeuw, P.J.: Silhouettes: A
Graphical Aid to the Interpretation and Validation of
Cluster Analysis. Journal of Computational and Ap-
plied Mathematics, 20:53–65.
Salamah, A. H., Tamazin, M., Sharkas, M. A., and Khedr,
M. (2016). An enhanced WiFi indoor localization sys-
tem based on machine learning. In 2016 International
Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN), pages 1–8.
Shim, Y., Chung, J., and Choi, I.-C. (2005). A Comparison
Study of Cluster Validity Indices Using a Nonhierar-
chical Clustering Algorithm. In International Con-
ference on Computational Intelligence for Modelling,
Control and Automation and International Confer-
ence on Intelligent Agents, Web Technologies and
Internet Commerce (CIMCA-IAWTIC’06), volume 1,
pages 199–204.
Singh, N., Choe, S., and Punmiya, R. (2021). Ma-
chine Learning Based Indoor Localization Using Wi-
Fi RSSI Fingerprints: An Overview. IEEE Access,
9:127150–127174.
Suddrey, G., Jacobson, A., and Ward, B. (2018). Enabling
a Pepper Robot to provide Automated and Interactive
Tours of a Robotics Laboratory. In Proceedings of
the Australasian Conference on Robotics and Automa-
tion (ACRA 2018). Australian Robotics and Automa-
tion Association (ARAA), Australia.
Thrun, S. (2003). Robotic mapping: a survey. Morgan
Kaufmann Publishers Inc.
Umesh, P. (2012). Image Processing in Python. CSI Com-
munications, 23.
Wang, J., Zhang, W., Hua, T., and Wei, T.-C. (2021). Un-
supervised learning of topological phase transitions
using the Calinski-Harabaz index. Phys. Rev. Res.,
3:013074.
Xiao, J., Lu, J., and Li, X. (2017). Davies Bouldin Index
based hierarchical initialization K-means. Intelligent
Data Analysis, 21(6):1327–1338.
Zhang, J. and Singh, S. (2014). LOAM: Lidar Odometry
and Mapping in Real-time. In Robotics: Science and
Systems.
Zhu, J. and Xu, H. (2019). Review of RFID-Based In-
door Positioning Technology. In Barolli, L., Xhafa, F.,
Javaid, N., and Enokido, T., editors, Innovative Mo-
bile and Internet Services in Ubiquitous Computing,
pages 632–641, Cham. Springer International Pub-
lishing.
A Case Study in Building 2D Maps with Robots
235