Bellman, R. (1966). Dynamic programming. Science,
153(3731):34–37.
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter,
J., Coors, S., Thomas, J., Ullmann, T., Becker, M.,
Boulesteix, A.-L., et al. (2023). Hyperparameter op-
timization: Foundations, algorithms, best practices,
and open challenges. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery.
Cavalcante, L., Lima, U., Barbosa, L., Gomes, A. L.,
´
Eden
Santana, and Martins, T. (2020). Improving Search
Quality with Automatic Ranking Evaluation and Tun-
ing. In Anais do XXXV Simp
´
osio Brasileiro de Bancos
de Dados, Brasil.
Chen, Y., Khrennikov, D., Ferrer, I., and Verberne, S.
(2022). WANDS: A Dataset for Web-based Product
Search. In European Conference on Information Re-
trieval, pages 61–75. Springer.
Cohen, J. (1960). A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement.
Dang, V., Bendersky, M., and Croft, W. B. (2013). Two-
stage learning to rank for information retrieval. In Ad-
vances in Information Retrieval. Springer.
Di Fabbrizio, G., Stepanov, E., and Tessaro, F. (2024).
Extreme Multi-label Query Classification for E-
commerce. In The SIGIR 2024 Workshop on eCom-
merce, Washington, D.C., USA.
Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., et al.
(2013). Towards an empirical foundation for assessing
bayesian optimization of hyperparameters. In NIPS
workshop on Bayesian Optimization in Theory and
Practice, Nevada. Curran Associates, Inc.
Eggensperger, K., Lindauer, M., and Hutter, F. (2019). Pit-
falls and best practices in algorithm configuration.
Journal of Artificial Intelligence Research, 64:861–
893.
Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust
and efficient hyperparameter optimization at scale. In
International conference on machine learning.
Feurer, M. and Hutter, F. (2019). Hyperparameter Opti-
mization, chapter 1, pages 3–38. Springer, Cham.
Frazier, P. I. (2018). Bayesian optimization. In Recent ad-
vances in optimization and modeling of contemporary
problems, pages 255–278. Informs.
Goswami, A., Zhai, C., and Mohapatra, P. (2018). Learning
to rank and discover for e-commerce search. In 14th
International Conference on Machine Learning and
Data Mining in Pattern Recognition (MLDM 2018),
pages 331–346, Germany. Springer.
Helfrich, S., Herzel, A., Ruzika, S., and Thielen, C. (2023).
Using scalarizations for the approximation of multiob-
jective optimization problems: towards a general the-
ory. Mathematical Methods of Operations Research,
pages 1–37.
Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best
arm identification and hyperparameter optimization.
In Artificial intelligence and statistics.
J
¨
arvelin, K. and Kek
¨
al
¨
ainen, J. (2000). IR evaluation meth-
ods for retrieving highly relevant documents. In Pro-
ceedings of the 23rd Annual International Confer-
ence on Research and Development in Information
Retrieval, New York, NY, USA. Association for Com-
puting Machinery.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence - Volume 2, IJCAI’95,
page 1137–1143, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., et al. (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In
Advances in Neural Information Processing Systems,
volume 33, pages 9459–9474. Curran Associates, Inc.
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. (2017). Hyperband: a novel bandit-
based approach to hyperparameter optimization. J.
Mach. Learn. Res., 18(1):6765–6816.
Mitra, B. and Craswell, N. (2018). An introduction to neu-
ral information retrieval. Foundations and Trends in
Information Retrieval.
Nigam, P., Song, Y., Mohan, V., Lakshman, V., Ding, W. A.,
Shingavi, A., Teo, C. H., Gu, H., and Yin, B. (2019).
Semantic product search. In Proceedings of KDD,
New York, NY, USA. Association for Computing Ma-
chinery.
Robertson, S. and Zaragoza, H. (2009). The probabilis-
tic relevance framework: Bm25 and beyond. Found.
Trends Inf. Retr., 3(4):333–389.
Storn, R. and Price, K. (1997). Differential evolution – a
simple and efficient heuristic for global optimization
over continuous spaces. J. of Global Optimization,
11(4):341–359.
Turnbull, D. and Berryman, J. (2016). Relevant Search:
With applications for Solr and Elasticsearch. Man-
ning Publications Co., USA.
Valcarce, D., Bellog
´
ın, A., Parapar, J., and Castells, P.
(2018). On the robustness and discriminative power
of information retrieval metrics for top-n recommen-
dation. In Proceedings of the 12th ACM conference
on recommender systems, pages 260–268.
Wang, Y., Wang, L., Li, Y., He, D., and Liu, T. (2013). A
Theoretical Analysis of NDCG Type Ranking Mea-
sures. In COLT 2013 - The 26th Annual Conference
on Learning Theory.
Zhou, G. and Devlin, J. (2021). Multi-vector attention mod-
els for deep re-ranking. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5452–5456.
Hyperparameter Optimization for Search Relevance in E-Commerce
407