soft arm with nonconstant curvature. IEEE Transac-
tions on Robotics, 31(4):823–834.
Gu, S., Kuba, J. G., Chen, Y., Du, Y., Yang, L., Knoll,
A., and Yang, Y. (2023). Safe multi-agent reinforce-
ment learning for multi-robot control. Artificial Intel-
ligence, 319:103905.
Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and
Levine, S. (2019). Learning to walk via deep rein-
forcement learning.
Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala,
D., Humplik, J., Wulfmeier, M., Tunyasuvunakool, S.,
Siegel, N. Y., Hafner, R., et al. (2024). Learning agile
soccer skills for a bipedal robot with deep reinforce-
ment learning. Science Robotics, 9(89):eadi8022.
Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor.
Ho, C.-K. and King, C.-T. (2022). Automating the learning
of inverse kinematics for robotic arms with redundant
dofs.
Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P.,
and Levine, S. (2021). How to train your robot
with deep reinforcement learning: lessons we have
learned. The International Journal of Robotics Re-
search, 40(4–5):698–721.
Kelly, S. (2018). Scaling genetic programming to challeng-
ing reinforcement tasks through emergent modularity.
PhD thesis, Dalhousie University, Halifax, Nova Sco-
tia, Canada.
Kelly, S. and Banzhaf, W. (2020). Temporal memory shar-
ing in visual reinforcement learning. Genetic Pro-
gramming Theory and Practice XVII, pages 101–119.
Kelly, S. and Heywood, M. I. (2017). Emergent tangled
graph representations for atari game playing agents.
In Genetic Programming: 20th European Conference,
EuroGP 2017, Amsterdam, The Netherlands, April
19-21, 2017, Proceedings 20, pages 64–79. Springer.
Kelly, S., Voegerl, T., Banzhaf, W., and Gondro, C. (2021).
Evolving hierarchical memory-prediction machines in
multi-task reinforcement learning. Genetic Program-
ming and Evolvable Machines, 22:573–605.
Phaniteja, S., Dewangan, P., Guhan, P., Sarkar, A., and Kr-
ishna, K. M. (2017). A deep reinforcement learning
approach for dynamically stable inverse kinematics of
humanoid robots. In 2017 IEEE international con-
ference on robotics and biomimetics (ROBIO), pages
1818–1823. IEEE.
Sciavicco, L. and Siciliano, B. (2012). Modelling and con-
trol of robot manipulators. Springer Science & Busi-
ness Media.
Smith, R. J., Amaral, R., and Heywood, M. I. (2021).
Evolving simple solutions to the cifar-10 bench-
mark using tangled program graphs. In 2021 IEEE
Congress on Evolutionary Computation (CEC), pages
2061–2068. IEEE.
Smith, R. J. and Heywood, M. I. (2023). Interpreting tan-
gled program graphs under partially observable dota 2
invoker tasks. IEEE Transactions on Artificial Intelli-
gence, 5(4):1511–1524.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.
Vacher, Q., Beuve, N., Allaire, P., Marty, T., Dardaillon, M.,
and Desnos, K. (2024). Ecta24 artifacts.
Wampler, C. (1986). Manipulator inverse kinematic solu-
tions based on vector formulations and damped least-
squares methods. Systems, Man and Cybernetics,
IEEE Transactions on, 16:93 – 101.
Wolovich, W. A. and Elliott, H. (1984). A computational
technique for inverse kinematics. The 23rd IEEE Con-
ference on Decision and Control, pages 1359–1363.
Zhong, J., Wang, T., and Cheng, L. (2021). Collision-free
path planning for welding manipulator via hybrid al-
gorithm of deep reinforcement learning and inverse
kinematics. Complex & Intelligent Systems, pages 1–
14.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
150