with other techniques like Retrieval Augmented Gen-
eration (RAG) for LLMs on other datasets.
REFERENCES
Abdelnasser, H., Ragab, M., Mohamed, R., Mohamed, A.,
Farouk, B., El-Makky, N. M., and Torki, M. (2014).
Al-bayan: an arabic question answering system for the
holy quran. pages 57–64.
Abouenour, L., Bouzoubaa, K., and Rosso, P. (2012).
Idraaq: New arabic question answering system based
on query expansion and passage retrieval.
Ahmad, N. D., Bennett, B., and Atwell, E. (2016).
Semantic-based ontology for malay qur’an reader.
Ahmed, B., Saad, M., and Refaee, E. A. (2022). Qqateam
at qur’an qa 2022: Fine-tunning arabic qa models for
qur’an qa task. pages 130–135.
Al-Omari, H. and Duwairi, R. (2023). So2al-wa-gwab: A
new arabic question-answering dataset trained on an-
swer extraction models. ACM Transactions on Asian
and Low-Resource Language Information Processing,
22(8):1–21.
Alnefaie, S., Atwell, E., and Alsalka, M. A. (2023). Is gpt-4
a good islamic expert for answering quran questions?
pages 124–133.
Alqahtani, M. and Atwell, E. (2018). Annotated corpus of
arabic al-quran question and answer.
Azmi, A. M. and Alshenaifi, N. A. (2017). Lemaza: An
arabic why-question answering system. Natural Lan-
guage Engineering, 23(6):877–903.
Bekhti, S. and Al-Harbi, M. (2013a). Aquasys: A question-
answering system for arabic. 25(6):19–27.
Bekhti, S. and Al-Harbi, M. (2013b). Aquasys: A question-
answering system for arabic. 25(6):19–27.
Benajiba, Y., Rosso, P., and Lyhyaoui, A. (2007). Imple-
mentation of the arabiqa question answering system’s
components. pages 3–5.
Brini, W., Ellouze, M., Mesfar, S., and Belguith, L. H.
(2009). An arabic question-answering system for fac-
toid questions. pages 1–7.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. (2020). Language models are few-
shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901.
Clark, J. H., Choi, E., Collins, M., Garrette, D.,
Kwiatkowski, T., Nikolaev, V., and Palomaki, J.
(2020). Tydi qa: A benchmark for information-
seeking question answering in ty pologically di verse
languages. Transactions of the Association for Com-
putational Linguistics, 8:454–470.
ElKomy, M. and Sarhan, A. M. (2022). Tce at qur’an qa
2022: Arabic language question answering over holy
qur’an using a post-processed ensemble of bert-based
models. arXiv preprint arXiv:2206.01550.
Hammo, B., Abu-Salem, H., Lytinen, S. L., and Evens, M.
(2002). Qarab: A: Question answering system to sup-
port the arabic language.
Hamoud, B. and Atwell, E. (2016). Quran question and
answer corpus for data mining with weka. pages 211–
216.
Kurdi, H., Alkhaider, S., and Alfaifi, N. (2014). Develop-
ment and evaluation of a web based question answer-
ing system for arabic language. Computer science &
information technology (CS & IT), 4(02):187–202.
Malhas, R. and Elsayed, T. (2020). Ayatec: building a
reusable verse-based test collection for arabic ques-
tion answering on the holy qur’an. ACM Transac-
tions on Asian and Low-Resource Language Informa-
tion Processing (TALLIP), 19(6):1–21.
Malhas, R. and Elsayed, T. (2022). Arabic machine
reading comprehension on the holy qur’an using cl-
arabert. Information Processing & Management,
59(6):103068.
Maraoui, H., Haddar, K., and Romary, L. (2021). Ara-
bic factoid question-answering system for islamic sci-
ences using normalized corpora. Procedia Computer
Science, 192:69–79.
Mozannar, H., Hajal, K. E., Maamary, E., and Hajj, H.
(2019a). Neural arabic question answering. arXiv
preprint arXiv:1906.05394.
Mozannar, H., Hajal, K. E., Maamary, E., and Hajj, H.
(2019b). Neural arabic question answering. arXiv
preprint arXiv:1906.05394.
Nakov, P., M
`
arquez, L., Moschitti, A., and Mubarak, H.
(2019). Arabic community question answering. Nat-
ural Language Engineering, 25(1):5–41.
OpenAI, R. (2023). Gpt-4 technical report. arxiv
2303.08774. View in Article, 2(5).
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. (2018). Improving language understanding by
generative pre-training.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.
Trigui, O., Hadrich Belguith, L., Rosso, P., Ben Amor, H.,
and Gafsaoui, B. (2012). Arabic qa4mre at clef 2012:
Arabic question answering for machine reading eval-
uation.
WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies
118